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a b s t r a c t 

Graph convolution networks (GCN) have been successfully applied in disease prediction tasks as they 

capture interactions (i.e., edges and edge weights on the graph) between individual elements. The inter- 

actions in existing works are constructed by fusing similarity between imaging information and distance 

between non-imaging information, whereas disregarding the disease status of those individuals in the 

training set. Besides, the similarity is being evaluated by computing the correlation distance between fea- 

ture vectors, which limits prediction performance, especially for predicting significant memory concern 

(SMC) and mild cognitive impairment (MCI). In this paper, we propose three mechanisms to improve 

GCN, namely similarity-aware adaptive calibrated GCN (SAC-GCN), for predicting SMC and MCI. First, we 

design a similarity-aware graph using different receptive fields to consider disease status. The labelled 

subjects on the graph are only connected with those labelled subjects with the same status. Second, we 

propose an adaptive mechanism to evaluate similarity. Specifically, we construct initial GCN with evalu- 

ating similarity by using traditional correlation distance, then pre-train the initial GCN by using training 

samples and use it to score all subjects. Then, the difference between these scores replaces correlation 

distance to update similarity. Last, we devise a calibration mechanism to fuse functional magnetic reso- 

nance imaging (fMRI) and diffusion tensor imaging (DTI) information into edges. The proposed method is 

tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demon- 

strate that our proposed method is useful to predict disease-induced deterioration and superior to other 

related algorithms, with a mean classification accuracy of 86.83% in our prediction tasks. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is a severe brain disorder, which 

s yet incurable, and no effective medicine exists for now 

 Association, 2018 ; Wang et al., 2013 ). The early stage of AD, i.e.,

ild cognitive impairment (MCI), has an annual 10%-15% conver- 

ion rate and an over 50% conversion rate within 5 years to AD 

 Hampel and Lista, 2016 ). In MCI stages, with specific cognitive 

raining and pharmacological treatment, the deterioration process 
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an be delayed or stopped ( Gauthier et al., 2006 ). Therefore, it is 

ssential to detect MCI and its earlier stage, significant memory 

oncerns (SMC). However, the accurate disease prediction of SMC 

nd MCI is still a challenging task due to their subtle differences 

n neuroimaging features ( Li et al., 2019b ; Wee et al., 2014 ; Zhang

t al., 2018). 

To overcome the limitation of subtle differences in neuroimag- 

ng features, it is increasingly popular to use multi-modal data to 

escribe or strengthen features from multiple sources ( Lei et al., 

020 ; Li et al., 2019a , 2020b ; Tong et al., 2017 ; Zhu et al., 2019).

or example, Zhu et al. (2019) proposed a multi-modal rank min- 

misation method to combine magnetic resonance imaging (MRI), 

https://doi.org/10.1016/j.media.2020.101947
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101947&domain=pdf
mailto:leiby@szu.edu.cn
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Table 1 

The notation. 

Notation Size Description 

n Number of subjects 

N Number of brain ROIs 

m Number of selected features by using recursive feature 

elimination (RFE) 

K Polynomial order 

r G Distance of gender 

r E Distance of equipment type 

w 1 Combined weight coefficient for functional score 

w 2 Combined weight coefficient for structural score 

ρ(·) Calculation of correlation distance 

Sim (·) Calculation of similarity 

Score f v Functional score of subject v 
Score s v Structural score of subject v 

F f v 1 × m Functional feature vector of subject v 
F s v 1 × m Structural feature vector of subject v 
F f u 1 × m Functional feature vector of subject u 

F s u 1 × m Structural feature vector of subject u 

X f n × m Functional feature matrix 

X s n × m Structural feature matrix 

A f s n × n Similarity-aware functional adjacency matrix 

A s s n × n Similarity-aware structural adjacency matrix 

A f sa n × n Similarity-aware adaptive functional adjacency matrix 

A s sa n × n Similarity-aware adaptive structural adjacency matrix 

A sac n × n Similarity-aware adaptive calibrated adjacency matrix 

Score s f n × 1 Functional score vector 

Structural score vector Score s s n × 1 
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ositron emission tomography (PET), and cerebrospinal fluid (CSF). 

hey then predicted AD with a linear regression classifier. Experi- 

ental results showed that the classification accuracy based on the 

bove three modalities increased by 6% compared to that based on 

SF. Li et al. (2019a) proposed a sparse regression algorithm for in- 

erence of the integrated hyper-connectivity networks from BOLD 

unctional MRI (fMRI) and arterial spin labelling (ASL). Finally, they 

sed a support vector machine (SVM) to predict MCI. Experimen- 

al results showed that the classification accuracy based on the 

bove two modalities increased by 11.5% compared to that based 

n BOLD fMRI. Integrating fMRI and diffusion tensor imaging (DTI) 

s shown to achieve good performance by integrating their comple- 

entary cues ( Lei et al., 2020 ; Li et al., 2020b ). Lei et al. (2020) de-

eloped a multi-task learning method to select features from fMRI 

unctional and DTI structural brain networks, and then the selected 

eatures were sent into an SVM for final prediction. Experimental 

esults showed that the classification accuracy based on fMRI and 

TI data increased by 3.76% compared to that based on fMRI data. 

i et al. (2020b) used the DTI tractography as penalty parameters 

n an ultra-weighted-lasso algorithm to construct more accurate 

MRI functional brain networks and finally used SVM for predic- 

ion. Experimental results showed that the classification accuracy 

ased on fMRI and DTI data increased by 5.5% compared to that 

ased on fMRI data. These works show that the performance of 

sing multi-modal neuroimaging is better than using single modal 

euroimaging for disease prediction. However, these studies were 

imited to use traditional machine learning methods for feature 

earning or as a classifier, which limited their performance to some 

xtent. 

As a deep learning method, graph convolution network 

GCN) has witnessed great success in disease prediction re- 

ently ( Kazi et al., 2019 ; Ktena et al., 2018 ; Parisot et al.,

018 ; Zhang et al., 2019 ), which is based on the graph theory

 Bapat et al., 2010 ). On a graph, a node represents a subject’s

ata, and the edges establish connections between each pair of 

odes. Parisot et al. (2018) integrated similarity between imaging 

nformation and distance between phenotypic information (e.g., 

ender, equipment type, and ages) into edges for the predic- 

ion of Autism Spectrum Disorder (ASD) and conversion to AD. 

azi et al. (2019) designed different kernel sizes in spectral convo- 

ution to learn cluster-specific features for predicting MCI and AD. 

xperimental results showed that their method performed better 

hen the classes had large and different variances. All these stud- 

es validate the effectiveness of GCN and show its convolution op- 

ration is the key to prediction performance. 

However, there are still limitations in the effectiveness of multi- 

odal fusion and GCNs. First, existing GCN studies ( Kazi et al., 

019 ; Kipf and Welling, 2017 ; Ktena et al., 2018 ; Parisot et al.,

018 ; Zhang et al., 2019 ) for disease prediction use whole popula- 

ion (including labelled subjects in the training set and unlabeled 

ubjects in the test set) to construct a graph, but fail to consider 

he difference between disease status in those labelled subjects. 

gnoring disease status on graph affects convolution performance 

nd eventually deteriorates system training. Second, the existing 

orks estimate edge weights by fusing similarity between imaging 

nformation and distance between non-imaging information. How- 

ver, the similarity between imaging information are roughly com- 

uted based on the correlation distance between feature vectors, 

hich affects convolution performance, especially when SMC and 

CI have subtle differences among feature vectors. Third, the ex- 

sting multi-modal GCN ( Zhang et al., 2019 ), composed of multi- 

le GCN frameworks for feature learning and then concatenating 

ulti-modal features for disease prediction, ignores the comple- 

entary relationship between fMRI and DTI data in graph con- 

truction. 
a

2 
To overcome the above limitations, we design a similarity- 

ware adaptive calibrated GCN, which uses two GCN models cor- 

esponding to fMRI and DTI data and balances their outputs via 

 combined weight mechanism. Three mechanisms are proposed 

n this paper. First, similarity-aware receptive fields are designed 

n graphs to consider the difference of disease status. Specifi- 

ally, every labelled node representing a training sample is only 

onnected with those labelled nodes with the same disease sta- 

us. Every unlabeled node representing a test sample may con- 

ect with every node on a graph. Second, we propose an adap- 

ive mechanism, which uses the difference between pre-scores 

o replace correlation distance to estimate more accurate simi- 

arity. Specifically, we use the initial similarity calculated based 

n correlation distance to construct an initial graph and pre-train 

CN using training samples. Then we use the pre-trained GCN 

o score all subjects. The difference between these pre-scores is 

sed to form the updated similarity. This is motivated by pre- 

rained GCNs leading to similarity metrics better than correlation 

istance. Third, based on the relevant and complementary rela- 

ionship between fMRI functional network and DTI structural net- 

ork, we propose a calibration mechanism to fuse functional and 

tructural information into edges. We validate our method by us- 

ng the ADNI (https://ida.loni.usc.edu) public database. Experimen- 

al results show that our method achieves promising performance 

or predicting SMC and MCI. 

. Methodology 

Fig. 1 shows an overview of our proposed prediction frame- 

ork. Our objective is to predict the status of an individual de- 

cribed as a node binary classification problem, where each node 

s assigned as a label l ∈ {0, 1}. For n subjects, each subject is rep-

esented by fMRI, DTI and phenotypic information (e.g., gender and 

quipment type). Based on fMRI and DTI data, we construct a func- 

ional connection (FC) brain network and a structural connection 

SC) brain network for every subject. To fuse fMRI and DTI infor- 

ation, we develop two graphs corresponding to two GCN models, 

nd each GCN model is trained and utilised independently. A graph 
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Fig. 1. General framework of our proposed disease deterioration prediction algorithm. (a) Supposing there are total n subjects in our classification task. We get n functional 

networks, and n structural networks, with every subject, has a functional network and a structural network. (b) There are n nodes on a graph with every node representing 

a subject, and we construct the functional graph with every node represented by functional features and construct the structural graph with every node represented by 

structural features. (c) After adaptive calibrated GCN, we get a n × 1 functional score vector Score s f and a n × 1 structural score vector Score s s . Every functional score 

represents the predicted result of its corresponding subject based on its functional features, and a structural score represents the predicted result based on a subject’s 

structural features. (d) We use a combined weight mechanism to finally form a n × 1 score vector as the final predicted results. 

Table 2 

Detailed information about the used dataset. 

Group SMC(44) EMCI(44) LMCI(38) NC(44) 

Male/Female 17M/27F 22M/22F 19M/19F 22M/22F 

Age (mean ±SD) 76.3 ±5.4 76.5 ±6.1 76.0 ±7.7 76.5 ±4.5 

GE/SIEMENS/PHILIPS 21/21/2 9/30/5 26/9/3 14/25/5 
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s described as G = { V, ε, A } . V represents vertices, and each vertex 

epresents a subject, ε represents edges and each edge models the 

imilarity between the corresponding subjects, and all edges com- 

ose adjacency matrix A . In this paper, we use feature matrix X to 

epresent features of all subjects on the graph. Each row of X rep- 

esents the selected features of its corresponding subject, and the 

umber of matrix rows matches with the number of total subjects 

n a graph. 

Generally, we divide our framework into four parts. First, we 

onstruct FC and SC brain networks for every subject. Second, we 

onstruct functional and structural graphs. Our similarity-aware re- 

eptive fields are proposed in this part. Third, we design an adap- 

ive calibrated GCN to output scores of subjects. We propose an 

daptive mechanism and a calibration mechanism to improve the 

djacency matrix in this part. Last, we employ a combined weight 

echanism to balance functional scores and structural scores to 

ccomplish our classification task. 

.1. Dataset description and brain network construction 

.1.1. Dataset 

A total of 170 subjects from the ADNI database are used for 

raining and testing, including SMC, early mild cognitive impair- 

ent (EMCI), late mild cognitive impairment (LMCI), and normal 

ontrol (NC). The gender, age and equipment type are used as phe- 

otypic information in this paper, and the detailed information is 

hown in Table 2 . 

Our prediction task is a node binary classification problem. 

herefore, we carry out our method on the six tasks, including NC 
3 
s. SMC, NC vs. EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI, 

nd EMCI vs. LMCI. 

.1.2. Functional brain network construction 

For fMRI data preprocessing, we apply the standard procedures 

ncluding using the GRETNA toolbox ( Wang et al., 2015 ) to prepro- 

ess our fMRI time-series signal. We discard the first ten acquired 

MRI volumes and correct the remaining 170 volumes by apply- 

ng mean-subtraction. We apply head movement correction, per- 

orm spatial normalisation with DARTEL, and perform smooth fil- 

ering by employing the Gaussian kernel. Finally, we regress the lo- 

al mean time-series, and use the automated anatomical labelling 

AAL) ( Tzourio-mazoyer et al., 2002 ) to segment brain space into 

0 regions of interests (ROIs). After the above process, we obtain 

he time-series of 90 ROIs for each individual. 

For constructing a functional brain network, Pearson’s correla- 

ion (PC) is used, which captures the relationship between pair 

OIs, and sparse representation (SR) method, which establishes 

ulti-ROI relationship. Based on SR method, many popular meth- 

ds have been proposed and applied, such as weighted sparse rep- 

esentation (WSR) ( Yu et al., 2017 ), strength-weighted sparse group 

epresentation (WSGR), Group sparse representation (GSR)(Zhang 

t al., 2017), strength and similarity guided GSR (SSGSR)(Zhang 

t al., 2018), and sparse low-rank (SLR) graph learning ( Qiao et al., 

016 ). The reviewed literature ( Qiao et al., 2018 ) summarises the 

bove methods. In this paper, we do not focus on the methods 

f brain network construction and use the reliable and straightfor- 

ard PC method to construct our FC network. After brain network 

onstruction, we finally get a 90 × 90 brain functional network for 

very subject. 

.1.3. Structural brain network construction 

For DTI structural brain network, we use PANDA Toolbox ( Goto 

t al., 2013 ) to get the global brain deterministic fibre bundle. We 

btain the fractional anisotropy (FA) as feature vectors and use the 

AL template on DTI image to divide the brain space into 90 ROIs. 

or SC network construction from DTI data, the average FA of links 

etween network nodes is defined as the connection weight in the 
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Fig. 2. Filtering principle of the graph theory. 
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TI network, and then we get a 90 × 90 SC network for every 

ubject. 

.1.4. Feature selection method 

After brain network construction, we finally have a 90 × 90 FC 

etwork and a 90 × 90 SC network for every subject. To reduce 

he dimension of FC and SC brain networks, we extract upper tri- 

ngular matrix elements to form a 1 × 4005 feature vector for ev- 

ry brain network. Then we use recursive feature elimination (RFE) 

 Guyon et al., 2002 ) to select features. Finally, a low-dimensional 

eature vector is used to represent an FC or SC brain network. For 

xample, for subject v , we have a low-dimensional functional fea- 

ure vector F 
f 

v and a low-dimensional structural feature vector F s v . 

.2. Graph construction 

The above low-dimensional feature vectors and acquired pheno- 

ypic information (e.g., gender, age, and equipment type) are used 

o construct graphs. We develop two GCN models with a func- 

ional graph and a structural graph, respectively. Graphs include 

odes and edges, where nodes represent subjects and edges es- 

ablish their connections. Specifically, every node on the functional 

raph is represented by its corresponding subject’s functional fea- 

ure vector. Every node on the structural graph is represented by 

ts corresponding subject’s structural feature vector. Edge connec- 

ions and edge weights are the keys in graph theory as they decide 

hich nodes are used to perform convolutions and correspond- 

ng convolutions coefficients, therefore they attract much atten- 

ion ( Liu et al., 2019 ; Xu et al., 2018 ). The two-layer network with

 graph ( Kipf and Welling, 2017 ) can be described as the equa-

ion Z = sof tmax ( A ReLU( AX W 

(0) ) W 

(1) ) and the filtering principle 

f graph theory is illustrated in Fig. 2 , where A is the adjacency

atrix with normalization. We can see that a big convolution co- 

fficient means big filtering effect in its corresponding feature. 

In existing methods, edge connections consider gender and 

quipment type with ignoring the disease status of those subjects 

n the training set, and edge weights are evaluated by a computed 

orrelation coefficient of feature vectors. In this subsection, we de- 

ign similarity-aware receptive fields to consider disease status of 

hose subjects in training set in terms of edge connections. In the 

ext subsection, we design an adaptive mechanism and calibration 

echanism to improve edge weights. For edge weights, we first 

se an existing method to initialise them. 
4 
.2.1. Edge connections based on similarity-aware receptive fields 

Previous work considers gender and equipment type to estab- 

ish edge connections by assigning bigger edge weights between 

hose subjects with the same gender and same equipment type. 

till, it fails to consider disease status of those subjects in the train- 

ng set. As disease status results in differences on subjects’ features 

nd status of most subjects on the graph (a graph includes those 

ubjects in both training set and test set) are known, it is neces- 

ary to consider disease status in edge connections. Hence, we de- 

ign three receptive fields that incorporate knowledge on disease 

tatus. Two receptive fields are for labelled subjects in the training 

et, and one receptive field is for unlabeled subjects in the test set. 

or a labelled patient, we establish its connections with all labelled 

atients. For a labelled NC, we establish its connections with all la- 

elled NCs. For every unlabeled subject in the test set, we ignore 

o consider its disease status and establish its connections with all 

ther subjects. The detailed description of three receptive fields is 

hown in Fig. 3 . 

.2.2. Edge weights initialisation 

Initial edge weights are estimated based on previous works 

 Kazi et al., 2019 ; Kipf and Welling, 2017 ; Ktena et al., 2018 ;

arisot et al., 2018 ; Zhang et al., 2019 ), which fuse similarity be-

ween imaging information and distance between non-imaging in- 

ormation. We use Sim (·) to denote similarity between paired sub- 

ects, r G represents the distance of gender, and r E represents the 

istance of equipment type. Based on the edge connections in 

imilarity-aware receptive fields in Fig. 3 , the initial similarity- 

ware functional adjacency matrix A 

f 
s and the initial similarity- 

ware structural adjacency matrix A 

s 
s are calculated as: 

 

f 
s ( v , u ) = Sim 

(
F f 

v , F 
f 

u 

)
× ( r G ( G v , G u ) + r E ( E v , E u ) ) , (1) 

 

s 
s ( v , u ) = Sim ( F s v , F 

s 
u ) × ( r G ( G v , G u ) + r E ( E v , E u ) ) , (2) 

here F 
f 

v and F 
f 

u are functional feature vectors of subject v and 

ubject u , F s v and F s u are their structural feature vectors, G v and 

 u represent their gender information, E v and E u represent their 

quipment type information, r G and r E are defined as: 

 G ( G v , G u ) = 

{
1 , G v = G u , 

0 , G v � = G u . 
, r E ( E v , E u ) = 

{
1 , E v = E u , 
0 , E v � = E u . 

, (3) 
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Fig. 3. Detailed description of similarity-aware receptive fields. We describe our similarity-aware fields by classifying NC and Patient. In the adjacency matrix, ‘1’ represents 

connection is established, and ‘0’ represents connection is not established. 
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The initial similarity is estimated by calculating the correlation 

istance between feature vectors as ( Parisot et al., 2018 ): 

im 

(
F f 

v , F 
f 

u 

)
= exp 

( 

−
[
ρ
(
F f 

v , F 
f 

u 

)]2 

2 σ 2 

) 

, 

Sim ( F s v , F 
s 

u ) = exp 

(
− [ ρ( F s v , F 

s 
u ) ] 

2 

2 σ 2 

)
, (4) 

here ρ( ·) is the correlation distance function, and σ is the width 

f the kernel. 

The above initial similarity Sim (·) is used to construct the edge 

eight which plays the role as a convolution coefficient in graph 

heory as shown in Fig. 2 . In the work ( Parisot et al., 2018 ), the

nal classification performance gets significant improvement by 

ombing Sim (·) with phenotypic information. The edge weight is 

oubled when its corresponding two subjects have the same gen- 

er and equipment type, and the edge weight is set to zero when 

orresponding two subjects have the different gender and equip- 

ent type. The method of intergrating phenotypic information in- 

reases the difference between edge weights and the final classifi- 

ation results valiudate this effectiveness. 

After establishing edge connections based on our similarity- 

ware receptive fields and above initial edge weights, we get the 

nitial similarity-aware functional adjacency matrix A 

f 
s and the ini- 

ial similarity-aware structural adjacency matrix A 

s 
s . 

.3. Adaptive calibrated GCN 

In this subsection, we develop two GCN models. One model is 

sed to predict disease status based on functional data, and the 

ther is used based on structural data. Each model is trained and 

tilised independently. Specifically, we use functional data in the 

raining set and their corresponding labels to train a GCN model, 

nd then use the trained model to predict the status of all subjects. 

fter the process, we get a functional score vector Score s f ε R 

n × 1 

o represent the predicted scores. Besides, we use the structural 

ata in the training set and their corresponding labels to train the 

ther GCN model, and also use the model to predict the status 

f all subjects. After the process, we get a structural score vec- 

or Score s s ε R 

n × 1 to represent the predicted scores. The above two 

CN models can accomplish prediction tasks independently. As in- 

egrating fMRI functional data and DTI structural data shows bet- 

er performance ( Lei et al., 2020 ; Li et al., 2020b ), we use a com-

ined weight mechanism method to combine their predicted re- 

ults to perform the final prediction. The corresponding two com- 

ined weight coefficients are set as 0. 5 in this paper according to 

he experimental results. 

Using the correlation distance to compute similarity in Eq. (4) is 

naccurate enough since SMC and MCI have subtle differences 

mong feature vectors. We propose an adaptive mechanism to im- 
5 
rove the similarity measure in view that GCN has better capabil- 

ty to extract in-depth features than the correlation distance. We 

evelop a calibration mechanism to fuse functional and structural 

ata into edges. By using our adaptive calibrated mechanism, we 

pdate our initial GCN models by pre-training and finally use the 

pdated GCN models to predict disease status. Our model is not 

rained end-to-end, and there are two steps in our adaptive cal- 

brated GCN. First, based on initial graphs, we train GCN models 

nd then use them to score every subject. Based on these scores, 

e use our adaptive mechanism and calibration mechanism to 

onstruct a new adjacency matrix and then form new graphs. Sec- 

nd, based on new graphs, we train GCN models again and finally 

se them to predict disease status. 

.3.1. Adaptive mechanism 

Random forest-derived similarity evaluation methods ( Shi et al., 

005 ; Shi and Horvath, 2006 ) use machine learning to evaluate 

imilarity in unsupervised clustering tasks, which inspire us to pro- 

ose an adaptive mechanism in GCN for our disease prediction. 

ompared with the initial adjacency matrices, the adaptive adja- 

ency matrices use score difference to replace correlation distance 

or constructing more accurate edge weights. First, we construct 

ual-modal GCN models with initial graphs and then pre-train 

CN models using training samples. Second, we input all subjects 

o the pre-trained GCN to get their scores. We use Score s f to rep- 

esent functional score vector and use Score s s to represent struc- 

ural score vector. Last, we re-compute edge weights with updated 

imilarity based on scores. The adaptive similarity based on scores 

re calculated: 

im 

(
F f 

v , F 
f 

u 

)
= exp 

( 

−
[
Score f v − Score f u 

]2 

2 σ 2 

) 

, 

Sim ( F s v , F 
s 

u ) = exp 

(
− [ Score s v − Score s u ] 

2 

2 σ 2 

)
, (5) 

here Score 
f 
v and Score 

f 
u denote the scores of subject v and sub- 

ect u on functional data, whereas Score s v and Score s u denote their 

cores on structural data. Every score is a scalar and ranges from 

 to 1, which is used to represent the predicted disease status of a 

ubject based on functional or structural features. In labels, we use 

 or 1 to represent the status of the subject. σ is also the width 

f the kernel. By Eqs. (1) , (2) , (3) and (5) , we finally get a more

ccurate similarity-aware adaptive functional adjacency matrix A 

f 
sa 

nd a more accurate similarity-aware adaptive structural adjacency 

atrix A 

s 
sa . 

.3.2. Calibration mechanism 

As functional and structural information is complementary, 

e propose a calibration mechanism to integrate fMRI functional 

nd DTI structural information. Let the symbol ◦ represent the 
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adamard product, based on the above similarity-aware adap- 

ive functional adjacency matrix A 

f 
sa and similarity-aware adaptive 

tructural adjacency matrix A 

s 
sa , the similarity-aware adaptive cali- 

rated adjacency matrix A sac is defined as: 

 sac = A 

f 
sa ◦ A 

s 
sa . (6) 

After using the calibration mechanism, we form a similarity- 

ware adaptive calibrated adjacency matrix A sac . It is worth men- 

ioning that the adjacency matrix is further normalized using 

q. (7) . After this, in the normalized adjacency matrix, the sum of 

very row of elements is set to 1. 

 sac ( i, j ) = A sac ( i, j ) / 
n ∑ 

k =1 

A sac ( i, k ) , (7) 

.3.3. Graph convolutional network architecture 

In GCN, spectral theory improves adjacency matrix A sac by ap- 

lying the convolution of Fourier transform and Taylor’s expan- 

ion formula to achieve an excellent filtering effect and computa- 

ional efficiency. The spectral convolution ( Defferrard et al., 2016 ; 

human et al., 2013 ) on graphs can be described as the multi- 

lication of a signal x ∈ R 

n (a scalar for every node) with a filter

 θ = diag(θ) by: 

 θ∗x = U g θ( �) U 

T x = 

K ∑ 

k =0 

θk T k 
(

˜ L 
)
x , (8) 

here U is the matrix of eigenvectors and is computed from for- 

ula L = I N − D 

− 1 
2 A ac D 

− 1 
2 = U �U 

T . I N and D are, respectively, the 

dentity matrix and the diagonal degree matrix. g θ (�) is well ap- 

roximated by a truncated expansion in terms of Chebyshev poly- 

omials to the K 

th -order. θk is a vector of Chebyshev coefficients, 

 k is Chebyshev polynomials function, ˜ L = 2 / λmax � − I N . 

After spectral convolution, similarity-aware adaptive calibrated 

djacency matrix A sac is approximated by 
K ∑ 

k =0 

θk T k ( ̃  L ) . By adjusting 

olynomial order K, it can get a different filter effect. For example, 

he performance reaches the best with K = 3 or 4 in prediction 

asks ( Kipf and Welling, 2017 ; Parisot et al., 2018 ). 

Our dual-modal GCN structure is illustrated in Fig. 1 . Every GCN 

odel consists of two graph convolution layers activated by rec- 

ified linear unit (ReLU) function and one softmax output layer. 

he functional and structural GCN models are trained using the 

hole population graph as input. After dual-modal adaptive cal- 

brated GCN, we get an updated functional score and structural 

core for every subject. Namely, we use a combined weight mech- 

nism to combine the two scores to perform the final prediction. 

pecifically, the final predicted score for a subject v is denoted by 

 1 × Score 
f 
v + w 2 × Score s v . According to our experimental results 

n the experimental section, we set w 1 = 0 . 5 and w 2 = 0 . 5 for our

ll prediction tasks. For example, for NC vs. SMC, the label of an 

MC subject is set 1, and the label of an NC is set to zero. The

redicted result of a subject after GCN models is represented by a 

core which ranges from 0 to 1. A subject with a predicted score 

anging from 0 to 0.5 is regarded as an NC, and a subject with a

redicted score ranging from 0.5 to 1 is regarded as an SMC. 

. Experiments and results 

We evaluate the proposed method on the ADNI database using 

 10-fold cross-validation strategy. As our main contribution is to 

mprove traditional GCN for predicting SMC and MCI, the GCN pa- 

ameters of all strategies in this paper are fixed and chosen accord- 

ng to previous work ( Parisot et al., 2018 ). Parameters details are as

elow: dropout rate is 0.1, regularisation is 5 × 10 −4 , the learning 
6 
ate is 0.005, the number of epochs is 200, and the default polyno- 

ial order is 3. Different from ( Parisot et al., 2018 ), to reduce the

umber of parameters in GCN and avoid overfitting, the number of 

eurons per layer is set as 8 and the number of the selected fea- 

ures is set as 50. For dual-modal GCN, w 1 = 0 . 5 and w 2 = 0 . 5 . In

his section, we refer to the graph constructed from the phenotypic 

ata, including gender and equipment type information. Given the 

mall size of our dataset and that age reduces the performance 

 Parisot et al., 2018 ), we ignore age information in GCN. Prediction 

ccuracy (ACC), sensitivity (SEN), specificity (SPE) and area under 

he curve (AUC) are used as evaluation metrics. Six binary clas- 

ification experiments including NC vs. SMC, NC vs. EMCI, NC vs. 

MCI, SMC vs. EMCI, SMC vs. LMCI and EMCI vs. LMCI validate our 

rediction performance. 

We divide this section into three parts. First, we test the per- 

ormance of our three mechanisms and compare them with other 

opular traditional algorithms. Second, we describe the effect of 

ur similarity-aware receptive fields and adaptive mechanism on 

he adjacency matrix. Third, we describe the effect of our adja- 

ency matrix on feature values. The critical parameters of the pro- 

osed method are described in the discussion section. 

.1. Classification performance of our method 

The proposed prediction framework is compared to other 

our related popular frameworks, including GCN ( Parisot et al., 

018 ), multiple layer perception (MLP), random forest (RF) 

 Breiman, 2001 ) and SVM( Cortes and Vapnik, 1995 ). The param- 

ters are set according to work by ( Parisot et al., 2018 ), the pa-

ameters of MLP are the same with GCN implementation, RF and 

VM use the scikit-learn library implementation ( Pedregosa et al., 

011 ). The parameters of RF are: The number of trees is 500, and 

he maximum depth is three. The parameters of SVM are: The ker- 

el is ‘sigmoid’, the kernel coefficient is 0.1, the regularisation pa- 

ameter is 0.1, and the maximum number of iterations is 200. 

To describe our three mechanisms in detail, similarity-aware 

eceptive fields, adaptive mechanism and calibration mechanism 

re named as ‘S’, ‘A’ and ‘C’, respectively. For example, the GCN 

ith similarity-aware receptive fields is represented by S-GCN, 

A-GCN represents the GCN with similarity-aware receptive fields 

nd adaptive mechanism, and SAC-GCN represents similarity-aware 

daptive calibrated GCN. The results of the experiment are shown 

n Table 3 . ROC curves comparison is shown in Fig. 4 . 

We use the most common approach to construct a brain net- 

ork in this paper. As shown in Table 3 , the performance of tra- 

itional classifiers (MLP, RF, SVM) based on our brain networks is 

oor, and there is only a few variation with less than 2.73% dif- 

erence in mean ACC of six tasks between the best and the worst 

erformance. SVM shows the best performance with mean ACC of 

ix tasks based on dual-modal data reaching to 73.75%. Compared 

ith the above traditional methods, the performance of GCN is 

uch improved. Specifically, compared with the best performance 

n traditional classifiers based on fMRI, DTI and dual modalities, 

he mean ACC of six tasks increase by 5.67%, 4.50% and 4.95%, and 

he mean AUC of six tasks increase by 7.23%, 7.18% and 9.93%. The 

erformance comparison follows the previous work ( Parisot et al., 

018 ), and it validates the effectiveness of graph theory on classi- 

cation. For the above six classification tasks based on dual-modal 

CN, the performance of NC vs. SMC is the worst, and the perfor- 

ance of NC vs. LMCI is the best. 

Because of the effectiveness of GCN and shortcomings of ex- 

sting researches, we propose three mechanisms to improve GCN 

n this paper. First, we propose similarity-aware receptive fields to 

onsider disease status in edge connections. As Table 3 shows, the 

erformance of S-GCN improves performance compared with GCN. 

pecifically, based on fMRI, DTI and dual modalities, the mean ACC 
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Table 3 

Disease prediction performance of different methods in our six tasks. 

Modal Method 

NC vs. SMC NC vs. EMCI NC vs. LMCI 

ACC () SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

fMRI MLP 59.09 61.36 56.81 63.58 62.50 61.36 62.06 68 65.85 65.78 65.90 72.97 

RF 60.22 65.91 54.54 68.34 65.90 52.27 79.54 70.51 68.29 60.52 75 70.87 

SVM 63.63 68.18 59.09 69.21 64.77 63.63 63.63 68.75 69.51 63.15 75 79.67 

GCN 70.45 84.09 56.81 76.39 68.18 79.54 56.81 73.61 71.95 71.05 72.72 76.67 

S-GCN 72.72 77.27 68.18 81.66 69.31 52.27 86.36 74.12 73.17 71.05 75 78.77 

SA-GCN 76.13 79.54 72.72 84.81 71.59 79.54 65.90 79.44 80.48 76.31 84.09 91.27 

SAC-GCN 77.27 81.81 72.72 80.37 75 84.09 65.91 80.94 84.14 78.94 88.63 92.64 

DTI MLP 67.63 68.18 59.09 74.07 70.45 63.63 77.27 84.95 73.17 71.05 75 84.99 

RF 65.63 70.45. 56.81 69.32 69.31 70.45 68.18 72.52 73.17 73.68 72.72 71.79 

SVM 71.59 86.36 56.81 84.35 69.31 72.72 65.90 71.82 71.95 71.05 72.72 80.32 

GCN 72.72 75 70.45 83.88 72.72 77.27 68.18 80.94 76.82 78.94 75 87.86 

S-GCN 75 88.63 61.36 84.81 73.86 77.27 70.45 82.90 76.82 78.94 75 90.43 

SA-GCN 79.54 86.36 72.72 90.03 77.27 86.36 68.18 85.80 84.14 84.21 84.09 91.09 

SAC-GCN 81.81 88.63 75 89.36 81.81 86.36 77.27 88.89 87.80 86.84 86.63 91.33 

Dual MLP 68.18 81.81 54.54 75.83 71.59 70.45 72.72 77.69 75.60 73.68 77.27 86.42 

RF 67.04 72.72 61.36 71.95 72.72 75 70.45 73.33 76.82 76.31 77.27 84.15 

SVM 73.86 86.36 61.36 76.76 71.59 75 68.18 73.14 73.17 73.68 72.72 80.08 

GCN 76.13 86.36 65.90 88.22 75 77.27 75.55 80.73 79.26 78.94 79.54 89.71 

S-GCN 78.40 88.63 68.18 86.00 76.13 79.54 72.72 83.32 82.92 81.57 84.09 89.83 

SA-GCN 81.81 86.36 77.27 90.29 79.54 88.63 70.45 86.67 85.36 81.57 88.64 89.53 

SAC-GCN 84.09 88.63 79.54 89.67 85.22 90.90 79.54 89.82 89.02 89.47 88.63 92.88 

Modal Method SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

fMRI MLP 60.22 65.90 54.54 63.43 58.83 44.73 70.45 64.35 65.85 71.05 61.36 70.22 

RF 63.63 65.90 61.36 66.99 61.97 57.07 77.27 60.19 62.19 65.78 59.09 66.33 

SVM 64.77 56.81 72.72 67.98 64.63 63.15 65.90 71.11 67.07 55.26 77.27 71.65 

GCN 72.72 77.27 68.18 83.37 71.95 55.26 86.36 82.06 73.17 97.73 54.54 79.67 

S-GCN 75 79.54 70.45 84.64 73.17 55.26 88.63 82.83 76.82 92.10 63.63 89.11 

SA-GCN 77.27 84.09 70.45 86.57 76.82 63.15 88.63 85.89 78.04 94.73 63.63 82.48 

SAC-GCN 80.68 79.54 81.81 89.31 76.82 63.15 88.63 85.89 79.26 84.21 75 90.67 

DTI MLP 68.18 68.18 68.18 75 70.73 68.42 72.72 81.16 67.07 60.52 72.72 69.08 

RF 70.45 81.81 59.09 79.60 73.17 65.78 79.54 79.13 68.29 68.42 68.18 70.10 

SVM 70.45 65.90 75.00 75.26 74.39 68.42 79.54 79.01 73.17 68.42 77.27 75.54 

GCN 79.54 79.54 79.54 93.39 81.70 78.94 84.09 84.39 74.39 89.47 61.36 78.95 

S-GCN 80.68 84.09 77.27 89.88 82.92 78.94 86.36 93.90 78.04 94.73 63.63 82.48 

SA-GCN 84.09 84.09 84.09 91.58 84.14 81.36 82.66 89.71 80.48 89.47 72.72 88.10 

SAC-GCN 85.22 88.63 81.81 92.05 86.58 84.21 88.63 95.69 82.92 94.73 72.72 94.14 

Dual MLP 69.31 70.45 68.18 73.86 71.95 76.31 68.18 83.07 69.51 65.78 72.72 70.57 

RF 71.59 70.45 72.72 79.34 75.60 71.05 79.54 80.74 71.95 73.68 70.45 72.13 

SVM 72.72 77.27 68.18 76.39 75.60 68.42 81.81 80.14 75.60 65.78 84.09 77.57 

GCN 80.09 77.27 81.31 88.79 82.70 84.21 79.54 86.90 79.26 94.73 65.90 89.35 

S-GCN 82.95 86.36 79.54 94.32 84.14 81.57 86.36 88.82 81.70 92.10 72.72 83.55 

SA-GCN 85.22 90.90 79.54 94.73 86.58 84.21 88.63 95.69 82.92 94.73 72.72 94.14 

SAC-GCN 88.63 95.45 81.81 95.56 87.80 84.21 90.90 90.25 86.58 92.10 81.81 94.26 

o

m

c

3

c

i

p

A

i

w

t

c

S

t

i

3

c

fi

n

N

c

b

c

o

a

T

S

A

a

m

i

s

w

h

f S-GCN of our six tasks increase by 1.96%, 1.57% and 2.30%, the 

ean SEN increase by -6.24%, 3.90% and 1.83%, the mean SPE in- 

rease by 9.47%, -0.75% and 2.64%, and the mean AUC increase by 

.22%, 2.49% and 0.35%. The above comparison results validate that 

onsidering disease status is essential in graph construction. By us- 

ng similarity-aware receptive fields on dual modalities, the final 

erformance of NC vs. LMCI gets the highest improvement with 

CC increased by 3.66%. In contrast, the ACC of the remaining tasks 

ncreased by 2.27%, 1.13%, 2.86%, 1.4 4%, and 2.4 4%. 

Second, we propose an adaptive mechanism to improve edge 

eights. As shown in Table 3 , based on similarity-aware recep- 

ive fields, adaptive mechanism yields improved results. Specifi- 

ally, based on fMRI, DTI and dual modalities, the mean ACC of 

A-GCN compared with S-GCN increase by 3.35%, 3.72% and 2.53%, 

he mean SEN increase by 8.37%, 1.54% and 2.77%, the mean SPE 

ncrease by 1.13%, 5.06% and 2.27%, and the mean AUC increase by 

.22%, 1.98% and 4.20%. The above comparison results show that 

ombined our adaptive mechanism with similarity-aware receptive 
7 
elds further improves performance. By using the adaptive mecha- 

ism on dual modalities, the final performance of NC vs. SMC and 

C vs. EMCI gets the most significant improvement with ACC in- 

reased by 3.42% and 3.41%. The ACC of the other tasks increases 

y 2.44%, 2.27%, 2.43% and 1.22%. After using similarity-aware re- 

eptive fields and adaptive mechanism, we can get the mean ACC 

f 83.57% for our six tasks. 

Third, we propose a calibration mechanism to fuse functional 

nd structural information into the adjacency matrix. As shown in 

able 3 , SAC-GCN yields improved results compared with SA-GCN. 

pecifically, based on fMRI, DTI and dual modalities, the mean 

CC of SAC-GCN compared with SA-GCN increase by 2.14%, 2.74% 

nd 3.31%, the mean SEN increase by -0.93%, 2.92% and 2.39%, the 

ean SPE increase by 4.54%, 2.93% and 4.16%, and the mean AUC 

ncrease by 1.56%, 2.52% and 0.23%. The above comparison results 

how that our calibration mechanism can improve performance 

hen functional adjacency matrix and structural adjacency matrix 

ave high precision. Eventually, the mean ACC, SEN, SPE and AUC 



X. Song, F. Zhou, A.F. Frangi et al. Medical Image Analysis 69 (2021) 101947 

Fig. 4. ROC curves comparison of different scenarios. 
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f SAC-GCN of our six tasks is 86.89%, 90.12%, 83.70% and 92.07%, 

espectively. 

Compared with the results based on fMRI data, it shows bet- 

er prediction performance based on DTI data. Specifically, for the 

hree traditional methods (MLP, RF and SVM), the mean ACC of our 

ix tasks increase by 7.48%, 6.30% and 6.08%, and the mean AUC 

f our six tasks increase by 11.11%, 6.53% and 6.32%. For GCN se- 

ies methods (GCN, S-GCN, SA-GCN and SAC-GCN), the mean ACC 

f our six tasks increases by 4.91%, 4.52%, 4.88% and 5.49%, and 

he mean AUC of our six task increases by 6.27%, 5.54%, 4.30% and 

.27%. We employ a combined weight mechanism to fuse the re- 

ults of dual-modal data for the final disease prediction. Compared 

ith the prediction results based on single modal DTI data, the 

rediction results based on dual-modal data show improvement. 

pecifically, for GCN methods (GCN, S-GCN, SA-GCN and SAC-GCN), 

he mean ACC of our six tasks increase by 2.42%, 3.15%, 1.96% and 

.53%, respectively. 

For our three mechanisms, similarity-aware receptive fields 

onsider disease status in graph construction and adaptive mecha- 

ism uses scores difference to replace correlation distance for con- 

tructing a more accurate adjacency matrix. The two appealing 

echanisms are not limited to our tasks, and they may extend to 

ther prediction tasks (e.g., AD, ASD and PD). 

.2. Effect of similarity-aware receptive fields and adaptive 

echanism on adjacency matrix 

The adjacency matrix is the key of graph theory, which is a 

athematical description of edges and edge weights, and plays the 

ole as a filter ( Kipf and Welling, 2017 ; Parisot et al., 2018 ). Specif-

cally, after applying spectral convolution as Eq. (8) , similarity- 
8 
ware adaptive calibrated adjacency matrix A sac is further approx- 

mated by 
K ∑ 

k =0 

θk T k ( ̃  L ) . A row of elements of the approximated ma- 

rix 
K ∑ 

k =0 

θk T k ( ̃  L ) can be regarded as the convolution coefficients of 

ts related subjects. Our three mechanisms play the role to improve 

he adjacency matrix and therefor improve the convolution coeffi- 

ients, and experimental results in the above subsection validate 

heir effectiveness. In this subsection, we describe how similarity- 

ware receptive fields and adaptive mechanism affect the adja- 

ency matrix. 

The proposed similarity-aware receptive fields consider the dis- 

ase status and constrain the receptive field of labelled nodes to 

hose nodes with the same status, which means we are establish- 

ng connections only between those subjects with the same status. 

ifferent from similarity-aware receptive fields focuing on edge 

onnections, the adaptive mechanism is proposed to improve edge 

eights. Edge weights represent convolution coefficients, where a 

onsiderable weight means its corresponding two subjects have 

etter similarity and a significant impact on each other. To describe 

he effect of similarity-aware receptive fields and adaptive mecha- 

ism, we pick up five subjects from the training set randomly for 

very disease status in every prediction task. Our prediction task 

s a node binary classification problem, so there are ten subjects to 

e picked up for every prediction task. Fig. 5 visualises their corre- 

ponding edge weights in an adaptive functional adjacency matrix 

nd adaptive structural adjacency matrix. The two adaptive adja- 

ency matrices have been processed by normalisation. 

Fig. 5 shows that parts of edge weights are zeros, which is the 

ffect of similarity-aware receptive fields that establish edge con- 
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Fig. 5. Effect of similarity-aware receptive fields and adaptive mechanism on edge weights in our six prediction tasks. In our six tasks, we pick up ten subjects randomly 

from the training set (five subjects for each disease status) and show their edge weights with all subjects on the graph. In every subFig., the abscissa represents subjects’ 

indices on the graph, and the ordinate represents a subject’s edge weights. Blue lines represent the edge weights constructed by using the traditional method, and red lines 

represent the edge weights constructed by using our similarity-aware receptive fields and adaptive mechanism. 

9 
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Table 4 

The standard deviations of the edge weights with and without our adaptive mechanism across our six tasks. ( ×10 −2 ). Cases 1-10 represent ten subjects in the corresponding 

task, and the ten subjects are the selected subjects in Fig. 5 . “Difference (i.e., A f − A s )” represents the difference of edge weights between fMRI functional adjacency matrix 

and DTI structural adjacency matrix. 

Case Modality NC vs. SMC NC vs. EMCI NC vs. LMCI SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI 

None/Adapt None/Adapt None/Adapt None/Adapt None/Adapt None/Adapt 

1 fMRI 1.83/1.86 1.79/1.81 1.81/1.87 1.66/1.62 1.62/1.70 1.56/1.59 

DTI 3.07/4.13 3.07/4.13 3.16/4.00 2.83/3.15 2.98/3.50 2.90/3.33 

Difference 2.51/3.88 2.61/3.95 2.68/3.69 2.58/2.88 3.03/3.14 2.61/2.96 

2 fMRI 1.67/1.69 1.69/1.68 1.71/1.72 1.66/1.72 1.66/1.69 1.64/1.67 

DTI 2.97/3.39 3.09/3.37 3.39/3.96 2.95/2.97 3.13/3.71 3.45/3.79 

Difference 3.08/2.32 3.20/2.36 2.94/3.52 2.52/2.59 2.71/3.34 3.06/3.76 

3 fMRI 1.87/1.98 1.85/1.89 1.85/1.98 1.84/1.88 1.67/1.71 1.82/1.87 

DTI 4.59/4.65 4.59/4.65 3.43/4.93 4.12/4.69 3.04/3.91 3.21/5.07 

Difference 4.01/4.31 4.04/4.32 4.66/4.05 4.53/3.93 2.51/3.65 3.91/4.49 

4 fMRI 1.92/1.95 1.89/1.90 1.93/1.94 1.59/1.62 1.59/1.67 1.62/1.67 

DTI 3.01/3.44 3.01/3.44 3.25/4.01 2.15/2.88 2.78/3.13 2.90/3.52 

Difference 2.52/2.87 2.46/2.87 2.50/3.47 1.71/2.27 2.32/3.21 2.35/3.06 

5 fMRI 1.84/1.94 1.85/1.86 1.91/1.92 2.42/2.54 1.60/1.64 2.49/2.53 

DTI 2.71/3.22 2.71/3.22 3.62/3.92 3.76/4.16 2.93/3.76 4.89/5.27 

Difference 2.38/2.86 2.02/2.68 3.22/3.48 2.80/3.43 2.16/3.61 4.45/4.52 

6 fMRI 1.57/1.62 1.94/1.99 2.06/1.96 2.04/2.07 0.24/0.31 1.96/2.05 

DTI 4.08/4.71 3.27/3.15 3.14/3.73 3.79/3.95 3.14/3.73 3.14/3.73 

Difference 3.65/3.83 2.50/2.54 2.86/3.58 3.45/3.33 3.24/3.73 2.96/3.55 

7 fMRI 1.71/1.75 2.03/2.09 2.15/2.13 2.07/2.09 0.27/0.55 2.09/2.15 

DTI 3.18/4.51 3.25/3.66 3.54/4.78 3.03/3.84 3.54/4.78 3.54/4.78 

Difference 2.73/4.29 2.65/3.13 3.27/4.48 2.38/3.41 3.71/4.72 3.13/4.63 

8 fMRI 1.89/1.93 1.63/1.69 1.93/2.00 1.62/1.67 1.93/1.96 1.93/2.06 

DTI 2.92/3.11 2.93/3.49 3.68/3.61 3.15/3.56 3.61/3.68 3.68/4.12 

Difference 2.39/2.68 2.59/3.27 3.14/3.16 2.78/3.32 2.90/3.09 2.91/3.16 

9 fMRI 1.66/1.68 1.62/1.65 1.17/1.74 1.56/1.63 1.72/1.85 1.78/1.83 

DTI 2.76/3.06 2.80/3.73 3.01/3.67 3.27/3.48 3.01/3.67 3.01/3.67 

Difference 3.11/2.43 2.65/3.39 2.41/3.07 2.91/3.07 2.61/3.16 2.71/3.28 

10 fMRI 1.94/1.97 1.95/2.11 1.97/2.00 1.89/1.99 1.88/1.96 1.91/1.95 

DTI 3.40/3.44 3.43/3.63 3.72/2.78 3.12/3.66 3.72/3.78 3.72/3.78 

Difference 2.55/2.59 3.06/2.66 3.60/3.42 2.35/2.86 3.20/3.45 3.29/3.34 
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ections only between those subjects with the same status. For ex- 

mple, for NC vs. SMC, in the first subfigure, we describe an NC 

ubject’ edge weights with all 88 subjects on the graph. As ab- 

cissa represents subject’s indices where indices 1-44 represent 44 

Cs and indices 45-88 represent 44 SMCs, the NC’s edge weights 

ith subjects 1-44 are mostly non-zeros whereas its edge weights 

ith subjects 45-88 are all zeros. Part of subjects are test samples, 

nd edge weights with these test samples are all set to zero. 

Compared with a little difference between edge weights com- 

uted by traditional methods Kazi et al., 2019 ; Ktena et al., 2018 ;

arisot et al., 2018 ; Zhang et al., 2019 ), our adaptive mechanism in-

reases the difference seen in every subfigure in Fig. 5 . Specifically, 

he red lines, which represent edge weights based on our adaptive 

echanism, show large fluctuations, whereas the blue lines show 

mall fluctuations. The standard deviations of these fluctuations 

re described in Table 4 . The standard deviations based on our 

daptive mechanism are larger than those based on the traditional 

ethod. In the work ( Parisot et al., 2018 ), by including phenotypic 

nformation as Eqs. (1) and ( (2) , the edge weight is doubled when

ts corresponding two subjects have the same gender and equip- 

ent type, and the edge weight is set to zero when corresponding 

wo subjects have the different gender and equipment type. This 

ncreases the difference between edge weights, which is validated 

o be useful to improve the final classification performance. Simi- 

ar to the work ( Parisot et al., 2018 ), our adaptive mechanism also

ncreases the difference and the final performance also gets im- 

rovement as shown in Table 3 . This suggests that our adaptive 

echanism has a better ability to explore the similarity relation- 

f

10 
hip between subjects. Comparing edge weights in the DTI struc- 

ural adjacency matrix with those edge weights in the fMRI func- 

ional adjacency matrix for the same subject, they show obvious 

ifferences. In Table 4 , we use “Difference” to represent the dif- 

erences between edge weights in fMRI functional adjacency ma- 

rix and DTI structural adjacency matrix. Standard deviations show 

here are many differences between edge weights in fMRI func- 

ional adjacency matrix and DTI structural adjacency matrix. Our 

daptive mechanism usually increases the differences. The differ- 

nces support the viewpoint that fMRI functional information and 

TI structural information have good complementarity ( Lei et al., 

020 ; Li et al., 2020b ), and it also agrees with the excellent perfor-

ance of our calibration mechanism and dual-modal GCN. 

.3. Effect of our adjacency matrix on feature values 

Fig. 6 visualises the top 10 most discriminative functional fea- 

ures and the top 10 most discriminative structural features and 

isualises feature values after pre-multiplying adjacency matrix. 

ig. 7 shows t-SNE visualisation results of feature maps, and the 

etailed effect on the mean and standard deviation of feature val- 

es is shown in Tables 5-6 . As FC and SC brain networks are usu-

lly represented by the selected most discriminative features from 

 × 4005 feature vectors, we use the indices of selected features in 

 × 4005 vector to represent them in this subsection. A features’ 

ndex represents the relationship between pair ROIs whereas cor- 

esponding feature value represents the relationship weight. 

As shown in Fig. 6 , there are different noise levels among dif- 

erent features. For example, the noise in the number 3915 fMRI 
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Fig. 6. The top 10 most discriminative fMRI and DTI features in our six prediction tasks. The abscissae represent subjects’ indices for prediction, and ordinates represent 

feature values. The blue line represents original feature values, and the red line represents feature values after pre-multiplying adjacency matrix A sac . 

11 
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Fig. 7. The t-SNE visualisation results of fMRI and DTI feature maps in different tasks. The effect is shown by pre-multiplying the adjacency matrices A 0 , A s , A sa , and A sac on 

X . X is a feature matrix, which includes feature values of test subjects. As there are 82 or 88 subjects in our tasks and we use the 10-fold cross-validation strategy, there are 

usually eight subjects in the test set for every fold, Hence, the t-SNE visualisation results are based on the eight test samples. A 0 represents the adjacency matrix constructed 

based on the traditional method, A s represents the adjacency matrix constructed based on the traditional method and our similarity-aware receptive fields, A sa represents 

the adjacency matrix constructed based on our similarity-aware receptive fields and our adaptive adjacency matrix, and A sac represents the adjacency matrix constructed 

based on our similarity-aware receptive fields, adaptive mechanism and calibration mechanism. 
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eature for NC vs. SMC is small, whereas the noise in the num- 

er 3797 fMRI feature is big. The noise in the number 3886 fMRI 

eature for SMC vs. LMCI is small, whereas the noise in the num- 

er 1153 fMRI feature is big. The noise level of the same feature 

etween different disease statuses is consistent. For example, the 

oise level in the number 3519 fMRI feature for NC vs. SMC fol- 

ows its noise level for NC vs. EMCI. The noise level in the number

51 DTI feature for NC vs. EMCI follows its noise level for NC vs. 

MCI. By pre-multiplying our adjacency matrix A sac , the noises in 

ll fMRI and DTI features are suppressed, as shown in Fig. 6 that 
ed line has a small fluctuation. L

12 
Fig. 7 describes the feature visualisation results of graph theory 

n the test set, and we have compared the effect of four kinds of 

djacency matrices on feature values. As there are 82 or 88 sub- 

ects for every task and we use a 10-fold cross-validation strat- 

gy, there are typically eight subjects in the test set. As shown in 

ig. 7 , compared with X , A 0 X has a better visualisation result for 

ome tasks. Specifically, for NC vs. SMC, SMC vs. EMCI, EMCI vs. 

MCI based on fMRI data and for NC vs. SMC, NC vs. LMCI, SMC 

s. EMCI, SMC vs. LMCI, EMCI vs. LMCI based on DTI data, it has a

etter visualisation result. For NC vs. EMCI, NC vs. LMCI, SMC vs. 

MCI based on fMRI data and for NC vs. EMCI based on DTI data, 
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Table 5 

Effect of our adjacency matrix A sac on the top 10 most discriminative fMRI feature values in our six classification tasks. We compare fMRI features’ mean values and standard 

deviations with or without pre-multiplying adjacency matrix A sac , and compare fMRI features’ mean values between different disease status. The mean column is measured 

on A sac X , A sac represents our adaptive calibrated adjacency matrix, and X represents the top 10 fMRI feature values of all subjects on the graph. 

NC vs. SMC NC vs. EMCI NC vs. LMCI 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(NC/SMC) 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(NC/EMCI) 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(NC/LMCI) 

82 0.71 ±0.11 0.71 ±0.04 0.69/0.73 161 0.70 ±0.11 0.70 ±0.04 0.72/0.67 455 0.85 ±0.09 0.86 ±0.03 0.85/0.87 

170 0.70 ±0.11 0.70 ±0.04 0.67/0.73 1652 0.69 ±0.11 0.70 ±0.04 0.67/0.72 519 0.74 ±0.09 0.74 ±0.04 0.77/0.71 

1339 0.70 ±0.09 0.70 ±0.04 0.67/0.73 1720 0.67 ±0.11 0.68 ±0.04 0.65/0.70 976 0.81 ±0.08 0.81 ±0.03 0.79/0.83 

3520 0.72 ±0.11 0.71 ±0.03 0.73/0.70 2728 0.78 ±0.09 0.78 ±0.04 0.81/0.76 1587 0.63 ±0.13 0.62 ±0.05 0.62/0.63 

3768 0.64 ±0.12 0.64 ±0.04 0.65/0.64 3499 0.66 ±0.14 0.65 ±0.04 0.64/0.66 1659 0.66 ±0.10 0.67 ±0.04 0.68/0.64 

3797 0.59 ±0.14 0.59 ±0.04 0.56/0.61 3737 0.69 ±0.10 0.68 ±0.03 0.67/0.70 1839 0.63 ±0.11 0.63 ±0.04 0.62/0.65 

3894 0.65 ±0.12 0.66 ±0.03 0.67/0.64 3777 0.59 ±0.12 0.58 ±0.04 0.55/0.61 3489 0.79 ±0.09 0.78 ±0.05 0.79/0.78 

3908 0.67 ±0.11 0.67 ±0.04 0.70/0.64 3915 0.94 ±0.03 0.94 ±0.01 0.94/0.95 3498 0.70 ±0.11 0.70 ±0.05 0.67/0.73 

3915 0.94 ±0.03 0.94 ±0.01 0.94/0.95 3961 0.93 ±0.04 0.93 ±0.01 0.94/0.92 3777 0.59 ±0.13 0.60 ±0.05 0.56/0.64 

3941 0.89 ±0.06 0.89 ±0.02 0.91/0.88 3971 0.86 ±0.08 0.87 ±0.03 0.89/0.85 3971 0.87 ±0.07 0.87 ±0.03 0.89/0.85 

SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(NC/SMC) 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(NC/EMCI) 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(NC/LMCI) 

59 0.74 ±0.09 0.74 ±0.03 0.73/0.75 166 0.70 ±0.09 0.70 ±0.03 0.68/0.71 737 0.69 ±0.08 0.69 ±0.02 0.70/0.68 

499 0.68 ±0.12 0.68 ±0.04 0.71/0.66 432 0.74 ±0.10 0.74 ±0.03 0.72/0.75 835 0.59 ±0.10 0.58 ±0.03 0.56/0.60 

666 0.68 ±0.08 0.68 ±0.03 0.70/0.66 1728 0.93 ±0.03 0.93 ±0.01 0.94/0.92 976 0.82 ±0.08 0.82 ±0.02 0.81/0.83 

737 0.72 ±0.09 0.72 ±0.03 0.74/0.71 2052 0.69 ±0.10 0.69 ±0.02 0.70/0.67 1153 0.61 ±0.12 0.61 ±0.03 0.62/0.61 

1367 0.82 ±0.11 0.82 ±0.03 0.81/0.82 2916 0.70 ±0.08 0.70 ±0.02 0.71/0.68 1230 0.76 ±0.09 0.77 ±0.03 0.78/0.75 

1644 0.57 ±0.12 0.57 ±0.04 0.55/0.59 2925 0.89 ±0.06 0.89 ±0.01 0.89/0.89 2480 0.57 ±0.09 0.56 ±0.02 0.57/0.56 

1877 0.63 ±0.10 0.63 ±0.03 0.62/0.65 3399 0.72 ±0.09 0.72 ±0.03 0.72/0.73 2779 0.78 ±0.08 0.78 + 0.03 0.76/0.80 

2589 0.66 ±0.10 0.65 ±0.05 0.71/0.62 3544 0.79 ±0.09 0.79 ±0.02 0.80/0.78 3529 0.59 ±0.10 0.60 + 0.04 0.57/0.63 

2639 0.63 ±0.10 0.63 ±0.05 0.67/0.60 3784 0.69 ±0.11 0.69 ±0.03 0.68/0.70 3877 0.74 ±0.10 0.75 + 0.03 0.73/0.77 

3686 0.64 ±0.11 0.64 ±0.03 0.62/0.66 3984 0.75 ±0.10 0.75 ±0.04 0.77/0.72 3886 0.90 ±0.04 0.91 + 0.01 0.91/0.90 

Table 6 

Effect of our adjacency matrix A sac on the top 10 most discriminative DTI feature values in our six classification tasks. We compare DTI features’ mean values and standard 

deviations with or without pre-multiplying adjacency matrix A sac , and compare DTI features’ mean values between different disease status. The mean column is measured 

on A sac X , A sac represents our adaptive calibrated adjacency matrix, and X represents the top 10 DTI feature values of all subjects on the graph. 

NC vs. SMC NC vs. EMCI NC vs. LMCI 

Feature 

index 

X

(Mean ±std) 

A ac X 

(Mean ±std) 

Means 

(NC/SMC) 

Feature 

index 

X

(Mean ±std) 

A ac X 

(Mean ±std) 

Means 

(NC/EMCI) 

Feature 

index 

X

(Mean ±std) 

A ac X 

(Mean ±std) 

Means 

(NC/LMCI) 

72 0.24 ±0.20 0.24 ±0.07 0.20/0.29 251 0.18 ±0.21 0.17 ±0.07 0.22/0.13 251 0.17 ±0.21 0.16 ±0.10 0.22/0.08 

1141 0.08 ±0.15 0.08 ±0.06 0.05/0.11 517 0.13 ±0.18 0.13 ±0.08 0.21/0.05 279 0.25 ±0.25 0.25 ±0.10 0.30/0.19 

1663 0.15 ±0.17 0.15 ±0.06 0.11/0.19 1372 0.17 ±0.20 0.18 ±0.07 0.14/0.23 1801 0.13 ±0.20 0.12 ±0.09 0.07/0.18 

2551 0.11 ±0.19 0.11 ±0.07 0.15/0.07 1777 0.21 ±0.18 0.21 ±0.06 0.25/0.18 2164 0.10 ±0.15 0.10 ±0.07 0.05/0.15 

2582 0.19 ±0.21 0.19 ±0.08 0.25/0.13 1801 0.13 ±0.20 0.13 ±0.08 0.07/0.18 2225 0.09 ±0.14 0.09 ±0.07 0.03/0.16 

2884 0.24 ±0.26 0.23 ±0.10 0.30/0.16 2444 0.13 ±0.20 0.13 ±0.06 0.09/0.16 2976 0.17 ±0.19 0.17 ±0.09 0.11/0.24 

3025 0.10 ±0.18 0.10 ±0.06 0.06/0.15 2976 0.17 ±0.19 0.16 ±0.08 0.11/0.22 2985 0.08 ±0.20 0.09 ±0.08 0.04/0.15 

3497 0.14 ±0.20 0.13 ±0.07 0.18/0.08 2984 0.18 ±0.18 0.19 ±0.08 0.25/0.12 3247 0.20 ±0.22 0.19 ±0.07 0.17/0.21 

3518 0.37 ±0.22 0.36 ±0.07 0.32/0.40 3139 0.04 ±0.14 0.05 ±0.05 0.01/0.09 3297 0.04 ±0.15 0.05 ±0.07 0.01/0.08 

3566 0.16 ±0.20 0.16 ±0.06 0.20/0.13 3495 0.16 ±0.22 0.16 ±0.06 0.13/0.19 3486 0.07 ±0.18 0.07 ±0.08 0.11/0.02 

SMC vs. EMCI SMC vs. EMCI SMC vs. LMCI 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(SMC/EMCI) 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(SMC/LMCI) 

Feature 

index 

X

(Mean ±std) 

A sac X 

(Mean ±std) 

Means 

(EMCI/LMCI) 

1801 0.13 ±0.20 0.12 ±0.07 0.06/0.18 76 0.25 ±0.23 0.24 ±0.10 0.30/0.16 1841 0.12 ±0.21 0.12 ±0.08 0.17/0.06 

2236 0.13 ±0.18 0.12 ±0.06 0.08/0.17 187 0.14 ±0.17 0.14 ±0.06 0.11/0.18 2197 0.11 ±0.19 0.11 ±0.07 0.07/0.16 

2396 0.12 ±0.19 0.13 ±0.09 0.06/0.19 503 0.18 ±0.17 0.18 ±0.08 0.25/0.11 2213 0.14 ±0.20 0.15 ±0.09 0.22/0.09 

2444 0.11 ±0.19 0.11 ±0.07 0.06/0.16 1801 0.12 ±0.20 0.12 ±0.08 0.06/0.18 2231 0.12 ±0.19 0.13 ±0.07 0.08/0.17 

2929 0.42 ±0.24 0.41 ±0.09 0.48/0.34 2142 0.13 ±0.17 0.12 ±0.07 0.08/0.17 2356 0.08 ±0.17 0.08 ±0.06 0.04/0.13 

3148 0.15 ±0.18 0.15 ±0.05 0.17/0.13 2164 0.10 ±0.15 0.10 ±0.06 0.05/0.16 2590 0.11 ±0.19 0.11 ±0.05 0.09/0.14 

3456 0.13 ±0.18 0.14 ±0.06 0.18/0.10 2528 0.15 ±0.21 0.15 ±0.07 0.11/0.19 2639 0.09 ±0.17 0.09 ±0.06 0.13/0.05 

3487 0.19 ±0.17 0.19 ±0.06 0.23/0.15 3018 0.48 ±0.18 0.48 ±0.08 0.55/0.41 3066 0.04 ±0.15 0.04 ±0.06 0.08/0.00 

3879 0.19 ±0.19 0.19 ±0.07 0.14/0.24 3105 0.11 ±0.21 0.12 ±0.07 0.07/0.17 3101 0.10 ±0.17 0.11 ±0.07 0.08/0.14 

3977 0.15 ±0.20 0.15 ±0.07 0.10/0.20 3387 0.07 ±0.16 0.07 ±0.04 0.09/0.06 3760 0.11 ±0.19 0.10 ±0.08 0.16/0.04 
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he improvement is not obvious. Compared with X , A sac X has a 

etter visualisation result for our six tasks. 

Tables 5-6 show the details of the experimental results. In the 

eature index column, we list the top 10 features’ indices, which 

re selected by using RFE method. The feature’s index represents 

he feature’s position in the 1 × 4005 feature vector, which are 

ormed by extracting upper triangular matrix elements from the 
13 
0 × 90 brain network. We can see there are many differences 

n the top 10 features’ indices between different prediction tasks. 

ost of fMRI features’ indices are different from DTI features’ in- 

ices in the same prediction task. For example, the top 10 fMRI 

eatures’ indices for NC vs. SMC is [82, 170, 1339, 3520, 3768, 3797, 

894, 3908, 3915, 3941], whereas the top 10 DTI features’ indices 
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Fig. 8. Influence of phenotypic information on the prediction accuracy in our six prediction tasks. 
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or NC vs. SMC is [72, 1141, 1663, 2551, 2582, 2884, 3025, 3497, 

518, 3566]. 

Tables 5-6 also describe the mean values and standard devia- 

ions of the top 10 feature values. Standard deviations show the 

ifferent noise levels of the top 10 features. For example, the num- 

er 3915 fMRI feature in NC vs. SMC has a small standard devia- 

ion, which follows its appearance for NC vs. EMCI. This result also 

ollows in Fig. 6 . The number 2976 DTI feature for NC vs. EMCI

as a big standard deviation, which also follows its appearance for 

C vs. LMCI. This result is also consistent with Fig. 6 . The consis-

ency of mean value and standard deviation for the same feature in 

ifferent prediction tasks shows the stability of our fMRI and DTI 

ata, but also shows there is a little fluctuation between the same 

eatures in different subjects although they have same disease sta- 

us. 

Tables 5-6 also describe the effect of disease status on fea- 

ure values. Tables 5-6 , show different disease states have differ- 

nt mean values in all prediction tasks. For example, in Table 5 , 

he mean value of the number 82 fMRI feature of all NC subjects 

s 0.69, whereas its mean value of SMC subjects is 0.73. This dif- 

erence between different disease statuses provides the foundation 

o predict disease. Compared with the effect of disease status on 

MRI feature values in Table 5 , the effect on DTI feature values in

able 6 appears much more apparent. For example, for NC vs. SMC, 

he mean difference of mean values of the top 10 fMRI features is 

.04, whereas the mean difference of the top 10 DTI features is 0.1. 

he more obvious discriminative DTI features make the prediction 

asks easier, and this follows the results in Tables 3 , whereas the 

erformance of our method and traditional methods based on DTI 

ata is much better than the performance based on fMRI data. 

The effectiveness of t-test method ( Arbabshirani et al., 2017 ; 

ietterich, 1998 ) for feature selection and the work ( Huang et al., 

020 ) suggest that big mean difference and small standard devia- 

ion are beneficial for classification. As shown in Fig. 6 , Table 5 and

able 6 , by pre-multiplying adjacency matrix A sac , the standard de- 

iations become smaller, and the results in Fig. 7 validate that pre- 

ultiplying adjacency matrix can improve final classification per- 

ormance. 
b

14 
. Discussion 

.1. Effect of phenotypic information 

Non-imaging phenotypic information (e.g., equipment type and 

ender) is a factor to affect imaging. For example, different equip- 

ent types probably use different imaging parameters, and this fi- 

ally results in some differences in the extracted image features. 

n advantage of GCN algorithms is integrating non-imaging phe- 

otypic information into edge weights on graphs, as shown in 

qs. (1) and (2) . For a subject on a graph, there is a convolution

lter as shown in Fig. 2 . The convolution filter uses the features 

rom other subjects to update the features of the subject being 

nalysed, and edge weights are corresponding to the convolution 

oefficients. In view the differences resulted by equipment type 

nd gender on image features, we assign a bigger edge weight be- 

ween the pair subjects with the same equipment type and gender, 

s shown in Eqs. (1) and (2) . The non-imaging phenotypic informa- 

ion is not used as a biomarker to supplement extracted features. 

n contrast, it is used to establish a more adequate and practical 

raph. As shown by Parisot et al. Parisot et al., 2018 ), the gender

nd equipment type is vital information for graph construction in 

D and ASD prediction, which result in 3% improvement on the fi- 

al accuracy. Considering the characteristics of our tasks, we also 

nvestigate the effect of phenotypic information on final prediction 

ccuracy, and the results in our six prediction tasks are shown in 

ig. 8 . The combination of phenotypic information and a similarity 

unction is shown in Eqs. (1) and ( (2) . 

In this experiment, we observe apparent variations on accu- 

acy. Specifically, the performance based on the only one similar- 

ty is the worst, whereas the performance based on similarity of 

oth phenotypic information (gender and equipment type) is the 

est. The difference between the best and the worst performing 

raphs in our six prediction tasks are 12.1%, 8.1%, 4.8%, 8.2%, 8.5% 

nd 4.6%, respectively. Gender appears to have a more consider- 

ble influence on accuracy than the imaging equipment used. This 

hows that features with different gender in our tasks have many 

ifferences. These findings are consistent with the previous study 

y ( Parisot et al., 2018 ). 
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Fig. 9. Effect of the number of the selected features on prediction accuracy in our 

six prediction tasks. 
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.2. Effect of the number of the selected features 

RFE is adopted to select features in the paper due to its promis- 

ng performance. As it recursively removes attributes and builds 

he model using the remaining attributes, the number of features 

eeds to be set to a reasonable value. We test the influence of the 

elected features’ number through experiment, and its influence in 

ll classification tasks on ACC is shown in Fig. 9 . In Fig. 9 , the num-

er of the selected features varies from 0 to 300 with a step 10.

he ACC values in all classification tasks increase as the number 

ncreases starting from zero, then the performance maintains a lit- 

le fluctuation with the number further increasing. Eventually, after 

xceeding a specific value, the further increase in the number re- 

ults in performance deterioration. In our six prediction tasks, the 

CC values reach the best with the number varying about from 40 

o 80. For NC vs. SMC, the performance deteriorates rapidly with 

he number increasing over about 80. For EMCI vs. LMCI, the per- 

ormance deteriorates rapidly with the number over 160. These re- 

ults validate that the number of the selected features need to be 

et as a reasonable value. A large number can increase system bur- 

en and cause performance deterioration, while a small number 

annot represent the subject’s information. Therefore, we set the 

umber of the selected features in all tasks as 50 in this paper. 
Fig. 10. Visualisation results of ki

15 
.3. Parameters of weight mechanism 

We have developed two GCN models according to functional 

ata and structural data. After our dual-modal GCN, we get a func- 

ional score and structural score for every subject. Namely, we use 

 combined weight mechanism to combine the two scores to per- 

orm the final prediction. For example, the final predicted score for 

 subject v is denoted as w 1 × Score 
f 
v + w 2 × Score s v . The parame- 

ers w 1 and w 2 are selected according to our experimental results. 

n this subsection, we show the effect of different weight parame- 

ers on performance in Table 7 . 

As Table 7 shows, different combined weight coefficients have 

n obvious influence on the final prediction accuracy. According to 

he above results, we set w 1 = 0.5 and w 2 = 0.5 in our six tasks. 

.4. Visualisation of the adjacency matrix 

The proposed similarity-aware receptive fields, adaptive mech- 

nism and calibration mechanism play the role to improve adja- 

ency matrix and eventually result in better performance. To de- 

cribe the effect of the above methods on the adjacency matrix, 

e use imagesc() function in MATLAB to show four kinds of ad- 

acency matrices. In Fig. 10 , there are four functional adjacency 

atrices and four structural adjacency matrices, where A 0 repre- 

ents the adjacency matrix constructed based on the traditional 

ethod, A s represents the adjacency matrix constructed based on 

he traditional method and our similarity-aware receptive fields, 

 sa represents the adjacency matrix constructed based on our 

imilarity-aware receptive fields and our adaptive adjacency ma- 

rix, and A sac represents the adjacency matrix constructed based 

n our similarity-aware receptive fields, adaptive mechanism and 

alibration mechanism. 

As shown in Fig. 10 , the adjacency matrix A 0 constructed 

y using the traditional method is a dense matrix. After using 

ur similarity-aware receptive fields, it becomes much sparse as 

he similarity-aware receptive fields ignore a part of connections. 

or the adjacency matrix A 0 constructed by using the traditional 

ethod, there are many differences between functional and struc- 

ural adjacency matrices. After using our three mechanisms, we fi- 

ally get a stable and united adjacency matrix A sac . 
nds of adjacency matrices. 
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Table 7 

Effect of different weight parameters on accuracy in our six classification tasks. 

Parameters NC vs. SMC NC vs. EMCI NC vs. LMCI SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI 

w 1 = 0.1, w 2 = 0.9 81.82 ±5.97 82.95 ±6.52 87.80 ±3.88 86.39 ±4.38 86.58 ±6.11 82.92 ±3.51 

w 1 = 0.2, w 2 = 0.8 82.95 ±6.44 84.09 ±6.44 87.80 ±5.39 87.51 ±4.09 86.58 ±6.11 84.14 ±3.51 

w 1 = 0.3, w 2 = 0.7 82.95 ±5.97 82.95 ±6.52 89.02 ±6.00 88.63 ±5.23 87.80 ±5.23 84.14 ±4.57 

w 1 = 0.4, w 2 = 0.6 84.09 ±4.57 84.09 ±6.44 89.02 ±7.02 89.75 ±4.38 89.02 ±4.38 85.36 ±4.57 

w 1 = 0.5, w 2 = 0.5 84.09 ±4.57 85.22 ±6.65 89.02 ±6.44 88.63 ±4.86 87.80 ±3.74 86.58 ±4.86 

w 1 = 0.6, w 2 = 0.4 82.97 ±4.72 85.22 ±6.65 86.58 ±7.05 88.63 ±3.74 86.58 ±3.92 84.14 ±5.36 

w 1 = 0.7, w 2 = 0.3 79.54 ±6.92 84.09 ±7.43 85.36 ±6.52 87.51 ±6.41 84.14 ±4.38 81.70 ±6.95 

w 1 = 0.8, w 2 = 0.2 79.54 ±6.95 79.54 ±6.65 84.14 ±5.52 84.09 ±7.76 81.70 ±5.52 80.48 ±8.46 

w 1 = 0.9, w 2 = 0.1 77.27 ±7.52 76.12 ±6.30 84.14 ±6.11 82.97 ±7.05 79.26 ±5.8 79.26 ±7.76 

Table 8 

The top 10 most discriminative fMRI features and their corresponding ROIs in our six classification tasks. 

NC vs. SMC NC vs. EMCI NC vs. LMCI 

Feature ROI index ROI name Feature ROI index ROI name Feature ROI index ROI name 

82 1,83 PreCG.L, TPOsup.L 161 2,74 PreCG.R, PUT.R 455 6,26 ORBsup.R, ORBsupmed.R 

170 2,83 PreCG.R, TPOsup.L 1652 21,83 OLF.L, TPOsup.L 519 6,90 ORBsup.R, ITG.R 

1339 17,52 ROL.L, MOG.R 1720 22,83 OLF.R, TPOsup.L 976 12,64 IFGoperc.R, SMG.R 

3520 59,70 SPG.L, PCL.R 2728 39,88 PHG.L, TPOmid.R 1587 20,87 SMA.R, TPOmid.L 

3768 68,84 PCUN.R, TPOsup.R 3737 67,75 PCUN.L, PAL.L 1659 21,90 OLF.L, ITG.R 

3797 70,72 PCL.R, CAU.R 3777 69,72 PCL.L, CAU.R 1839 24,69 SFGmed.R, PCL.L 

3894 75,84 PAL.L, TPOsup.R 3915 77,78 THA .L, THA .R 3489 58,70 PoCG.R, PCL.R 

3908 76,84 PAL.R, TPOsup.R 3499 58,80 PoCG.R, HES.R 3498 58,79 PoCG.R, HES.L 

3915 77,78 THA .L, THA .R 3961 81,82 STG.L, STG.R 3777 69,72 PCL.L, CAU.R 

3941 79,81 HES.L, STG.L 3971 82,84 STG.R, TPOsup.R 3971 82,84 STG.R, TPOsup.R 

SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI 

Feature ROI index ROI name Feature ROI index ROI name Feature ROI index ROI name 

59 1, 60 PreCG.L, SPG.R 737 9, 62 ORBmid.L, IPL.R 166 2, 79 PreCG.R, HES.L 

499 6, 70 ORBsup.R, PCL.R 835 10, 88 ORBmid.R,TPOmid.R 432 5, 87 ORBsup.L, TPOmid.L 

666 8, 72 MFG.R, CAU.R 976 12, 64 IFGoperc.R, SMG.R 1728 23, 24 SFGmed.L, SFGmed.R 

737 9, 62 ORBmid.L, IPL.R 1153 14, 88 IFGtriang.R,TPOmid.R 2052 27, 90 REC.L, ITG.R 

1367 17, 80 ROL.L, HES.R 1230 15, 90 ORBinf.L, ITG.R 29 43, 82 CAL.L, STG.R 

1644 21, 75 OLF.L, PAL.L 2480 35, 50 PCG.L, SOG.R 2925 44, 45 CAL.R, CUN.L 

1877 25, 42 ORBsupmed.L,AMYG.R 2779 40, 89 PHG.R, ITG.L 3399 55, 79 FFG.L, HES.L 

2589 37, 52 HIP.L, MOG.R 3529 59, 79 SPG.L, HES.L 3544 60, 64 SPG.R, SMG.R 

2639 38, 50 HIP.R, SOG.R 3877 74, 82 PUT.R, STG.R 3784 69, 79 PCL.L, HES.L 

3686 65, 71 ANG.L, CAU.L 3886 75, 76 PAL.L, PAL.R 3984 83, 90 TPOsup.L, ITG.R 
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.5. Most discriminative connectivity features 

Tables 8-9 list the top 10 most discriminative connectivity fea- 

ures and related ROI brain regions in six classification tasks. For 

MRI data, we can see that many of these selected brain regions 

ollow the observations reported in the previous studies. For ex- 

mple, the right olfactory cortex (OLF.R) ( Li et al., 2020a ; Sun et al.,

012 ; Tekin and Cummings, 2002 ; Vasavada et al., 2015 ; Yu et al.,

019 ; Zhang et al., 2018), left hippocampus (HIP.L) ( Salvatore et al., 

015 ; Zhang et al., 2018), left calcarine cortex(CAL.L) ( Li et al., 

020a ; Xu et al., 2016 ) are usually reported as highly associated 

ith AD/MCI pathology. However, there are many differences in 

he top 10 most discriminative connectivity features between our 

ix prediction tasks and two modalities. As shown in Fig. 9 , the 

erformance of our six prediction tasks is saturated when the 

umber of the selected features is set as 30. Therefore, we show 

he top 30 discriminative connectivity features for the FC network 

nd SC network in Fig. 11 . As shown in Fig. 11 , there are many

ifferences in the top 30 most discriminative connectivity features 

etween different prediction tasks and different modalities. In the 

iterature ( Li et al., 2019b , 2020a; Wee et al., 2014 ; Yu et al., 2019 ;

hang et al., 2018), there are also many differences in the top 10 

ost discriminative connectivity features and the top 10 most dis- 

m

16 
riminative ROIs for SMC vs. NC. Based on above differences in our 

aper and literature, the different noise levels of the top 10 feature 

alues in Tables 5-6 , and the influence of selected features’ num- 

er in Fig. 9 , we conclude there are several hundred connectivity 

eatures are associated with prediction tasks. This conclusion fol- 

ows the results in the literature ( Parisot et al., 2018 ), where GCN

btains the best performance when using RFE to select 20 0 0 fea- 

ures, or using MLP to select 250 features, or using Autoencoder 

AE) to select 500 features. The above results also show that dif- 

erent construction methods of brain network and feature selec- 

ion methods can cause obvious difference in most discriminative 

onnectivity features. 

.6. Comparison to the related prior works 

Besides investigating our three mechanisms and parameters of 

CN impact prediction performance, we further compare our SAC- 

CN method with other different competing methods in the corre- 

ponding papers. Table 10 shows the comparison results. We can 

bserve that our proposed method has achieved promising per- 

ormance. Apart from good prediction performance, our proposed 

ethod does not need to construct complex brain connection net- 
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Table 9 

The top 10 most discriminative DTI features and their corresponding ROIs in our six classification tasks. 

NC vs. SMC NC vs. EMCI NC vs. LMCI 

Feature ROI index ROI name Feature ROI index ROI name Feature ROI index ROI name 

72 1,73 PreCG.L, PUT.L 251 3,77 SFGdor.L, THA.L 251 3,77 SFGdor.L, THA.L 

1141 14,76 IFGtriang.R, PAL.R 517 6,88 ORBsup.R, TPOmid.R 279 4,19 SFGdor.R, SMA.L 

1663 22,26 OLF.R, ORBsupmed.R 1372 17,85 ROL.L, MTG.L 1801 24,31 SFGmed.R, ACG.L 

2551 36,67 PCG.R, PCUN.L 1777 23,73 SFGmed.L, PUT.L 2164 29,79 INS.L, HES.L 

2582 37,45 HIP.L, CUN.L 1801 24,31 SFGmed.R, ACG.L 2225 30,80 INS.R, HES.R 

2884 43,50 CAL.L, SOG.R 2444 34,69 DCG.R, PCL.L 2976 45,51 CUN.L + R, MOG.L 

3025 46,56 CUN.R, FFG.R 2976 45,51 CUN.L + R, MOG.L 2985 45,60 CUN.L + R, SPG.R 

3497 58,78 PoCG.R, THA.R 2984 45,59 CUN.L + R, SPG.L 3247 51,73 MOG.L, PUT.L 

3518 59,68 SPG.L, PCUN.R 3139 48,85 LING.R, MTG.L 3297 52,85 MOG.R, MTG.L 

3566 60,86 SPG.R, MTG.R 3495 58,76 PoCG.R, PAL.R 3486 58,67 PoCG.R, PCUN.L 

SMC vs. EMCI SMC vs. LMCI EMCI vs.LMCI 

Feature ROI index ROI name Feature ROI index ROI name Feature ROI index ROI name 

1801 24,31 SFGmed.R, ACG.L 76 1,77 PreCG.L, THA.L 1841 24,71 SFGmed.R, CAU.L 

2236 31,32 ACG.L, ACG.R 187 3,13 SFGdor.L, IFGtriang.L 2197 30,52 INS.R, MOG.R 

2396 33,77 DCG.L, THA.L 503 6,74 ORBsup.R, PUT.R 2213 30,68 INS.R, PCUN.R 

2444 34,69 DCG.R, PCL.L 1801 24,31 SFGmed.R, ACG.L 2231 30,86 INS.R, MTG.R 

2929 44,49 CAL.R, SOG.L 2142 29,57 INS.L, PoCG.L 2356 33,37 DCG.L, HIP.L 

3148 49,53 SOG.L, IOG.L 2164 29,79 INS.L, HES.L 2590 37,53 HIP.L, IOG.L 

3456 57,69 PoCG.L, PCL.L 2528 36,44 PCG.R, CAL.R 2639 38,50 HIP.R, SOG.R 

3487 58,68 PoCG.R, PCUN.R 3018 46,49 CUN.R, SOG.L 3066 47,54 LING.L, IOG.R 

3879 74,84 PUT.R, TPOsup.R 3105 48,51 LING.R, MOG.L 3101 47,89 LING.L, ITG.L 

3977 82,90 STG.R, ITG.R 3387 55,67 FFG.L, PCUN.L 3760 68,76 PCUN.R, PAL.R 

Table 10 

Algorithm comparison with the related works. 

References Modality Subject Method Task ACC SEN SPE 

( Wee et al., 2016 ) fMRI 29 EMCI, 30 NC Fused multiple graphical lasso EMCI vs. NC 79.6 75.8 70.0 

( Yu et al., 2017 ) fMRI 50 MCI, 49 NC Weighted Sparse Group 

Representation 

MCI vs. NC 84.8 91.2 78.5 

( Guo et al., 2017 ) fMRI 33 EMCI, 32 LMCI, 28 NC Multiple Features of 

Hyper-Network 

EMCI vs. NC 72.8 78.2 67.1 

LMCI vs. NC 78.6 82.5 72.1 

( Li et al., 2020b ) fMRI + DTI 36MCI, 37NC Adaptive dynamic functional 

connectivity 

MCI vs. NC 87.7 88.9 86.5 

(Zhu et al., 2019) MRI + PET + CSF 99MCI, 53NC SPMRM model MCI vs. NC 83.5 95.0 62.8 

( Lei et al., 2020 ) fMRI + DTI 40 LMCI, 77 EMCI, 67 NC Low-Rank Self-calibrated Brain 

Network, Joint Non-Convex 

Multi-Task Learning 

NC vs. SMC 82.9 88.6 77.2 

NC vs. EMCI 85.2 86.3 84.1 

NC vs. LMCI 87.8 84.2 90.9 

SMC vs. EMCI 84.0 81.8 86.3 

SMC vs. LMCI 90.2 89.4 90.9 

EMCI vs. LMCI 81.7 78.9 84.0 

Ours fMRI + DTI 40 LMCI, 77 EMCI, 67 NC Similarity-aware adaptive 

calibrated GCN 

NC vs. SMC 84.9 88.6 79.5 

NC vs. EMCI 85.2 90.9 79.5 

NC vs. LMCI 89.0 89.4 88.6 

SMC vs. EMCI 88.6 95.4 81.8 

SMC vs. LMCI 87.8 84.2 90.9 

EMCI vs. LMCI 85.5 92.1 81.8 
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orks. Hence, it has a good application prospect in other predic- 

ion tasks. 

In our earlier work ( Lei et al., 2020 ), we proposed to use

elf-calibrated low-rank regularisation to construct fMRI functional 

etwork, concatenated fMRI and DTI features. We used a multi- 

ask learning framework to select the most discriminative fea- 

ures for final prediction. Although the work archived good per- 

ormance, it ignores to integrate phenotypic information and the 

nteractions between subjects. Compared to it, our SAC-GCN has 

ood performance without constructing complicated brain connec- 

ion networks. The proposed method is not limited to the tasks 
t

17 
n this paper, and can flexibly be adapted to other multi-modal 

asks. 

. Conclusion 

In this paper, we propose three mechanisms to improve GCNs 

or SMC and MCI prediction. These mechanisms improve predic- 

ion performance significantly by establishing a more accurate ad- 

acency matrix. In the adjacency matrix, the similarity-aware re- 

eptive fields consider the disease status of those subjects in the 

raining set and constrain the receptive field of labelled subjects to 
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Fig. 11. Top 30 discriminative connectivity features in fMRI and DTI brain connection networks in our six prediction tasks. 
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hose subjects with the same status. The adaptive mechanism uses 

re-trained GCNs to score all subjects and then uses score differ- 

nce to replace correlation distance to update similarity. Besides, 

he calibration mechanism fuses dual-modal information into the 

djacency matrix. Our experimental results on SAC-GCNs show 

ignificant improvement over traditional GCNs. To reveal the rea- 

on for good performance, we describe how our mechanisms im- 

rove the adjacency matrix and then describe its filtering effect 

y analysing feature values. Despite the superior performance, our 

AC-GCN has a more straightforward structure and practical appli- 

ation prospect in other prediction tasks. In our future work, we 

ill improve our calibration mechanism and extend this work to 

ulti-task classification. 
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