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Graph convolution networks (GCN) have been successfully applied in disease prediction tasks as they
capture interactions (i.e., edges and edge weights on the graph) between individual elements. The inter-
actions in existing works are constructed by fusing similarity between imaging information and distance
between non-imaging information, whereas disregarding the disease status of those individuals in the
training set. Besides, the similarity is being evaluated by computing the correlation distance between fea-
ture vectors, which limits prediction performance, especially for predicting significant memory concern
(SMC) and mild cognitive impairment (MCI). In this paper, we propose three mechanisms to improve
GCN, namely similarity-aware adaptive calibrated GCN (SAC-GCN), for predicting SMC and MCI. First, we
design a similarity-aware graph using different receptive fields to consider disease status. The labelled
subjects on the graph are only connected with those labelled subjects with the same status. Second, we
propose an adaptive mechanism to evaluate similarity. Specifically, we construct initial GCN with evalu-
ating similarity by using traditional correlation distance, then pre-train the initial GCN by using training
samples and use it to score all subjects. Then, the difference between these scores replaces correlation
distance to update similarity. Last, we devise a calibration mechanism to fuse functional magnetic reso-
nance imaging (fMRI) and diffusion tensor imaging (DTI) information into edges. The proposed method is
tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demon-
strate that our proposed method is useful to predict disease-induced deterioration and superior to other
related algorithms, with a mean classification accuracy of 86.83% in our prediction tasks.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction can be delayed or stopped (Gauthier et al., 2006). Therefore, it is

essential to detect MCI and its earlier stage, significant memory

Alzheimer’s disease (AD) is a severe brain disorder, which
is yet incurable, and no effective medicine exists for now
(Association, 2018; Wang et al., 2013). The early stage of AD, i.e.,
mild cognitive impairment (MCI), has an annual 10%-15% conver-
sion rate and an over 50% conversion rate within 5 years to AD
(Hampel and Lista, 2016). In MCI stages, with specific cognitive
training and pharmacological treatment, the deterioration process
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concerns (SMC). However, the accurate disease prediction of SMC
and MCI is still a challenging task due to their subtle differences
in neuroimaging features (Li et al., 2019b; Wee et al., 2014; Zhang
et al,, 2018).

To overcome the limitation of subtle differences in neuroimag-
ing features, it is increasingly popular to use multi-modal data to
describe or strengthen features from multiple sources (Lei et al.,
2020; Li et al., 2019a, 2020b; Tong et al., 2017; Zhu et al., 2019).
For example, Zhu et al. (2019) proposed a multi-modal rank min-
imisation method to combine magnetic resonance imaging (MRI),
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positron emission tomography (PET), and cerebrospinal fluid (CSF).
They then predicted AD with a linear regression classifier. Experi-
mental results showed that the classification accuracy based on the
above three modalities increased by 6% compared to that based on
CSF. Li et al. (2019a) proposed a sparse regression algorithm for in-
ference of the integrated hyper-connectivity networks from BOLD
functional MRI (fMRI) and arterial spin labelling (ASL). Finally, they
used a support vector machine (SVM) to predict MCI. Experimen-
tal results showed that the classification accuracy based on the
above two modalities increased by 11.5% compared to that based
on BOLD fMRI. Integrating fMRI and diffusion tensor imaging (DTI)
is shown to achieve good performance by integrating their comple-
mentary cues (Lei et al., 2020; Li et al., 2020b). Lei et al. (2020) de-
veloped a multi-task learning method to select features from fMRI
functional and DTI structural brain networks, and then the selected
features were sent into an SVM for final prediction. Experimental
results showed that the classification accuracy based on fMRI and
DTI data increased by 3.76% compared to that based on fMRI data.
Li et al. (2020b) used the DTI tractography as penalty parameters
in an ultra-weighted-lasso algorithm to construct more accurate
fMRI functional brain networks and finally used SVM for predic-
tion. Experimental results showed that the classification accuracy
based on fMRI and DTI data increased by 5.5% compared to that
based on fMRI data. These works show that the performance of
using multi-modal neuroimaging is better than using single modal
neuroimaging for disease prediction. However, these studies were
limited to use traditional machine learning methods for feature
learning or as a classifier, which limited their performance to some
extent.

As a deep learning method, graph convolution network
(GCN) has witnessed great success in disease prediction re-
cently (Kazi et al, 2019; Ktena et al, 2018; Parisot et al.,
2018; Zhang et al., 2019), which is based on the graph theory
(Bapat et al., 2010). On a graph, a node represents a subject’s
data, and the edges establish connections between each pair of
nodes. Parisot et al. (2018) integrated similarity between imaging
information and distance between phenotypic information (e.g.,
gender, equipment type, and ages) into edges for the predic-
tion of Autism Spectrum Disorder (ASD) and conversion to AD.
Kazi et al. (2019) designed different kernel sizes in spectral convo-
lution to learn cluster-specific features for predicting MCI and AD.
Experimental results showed that their method performed better
when the classes had large and different variances. All these stud-
ies validate the effectiveness of GCN and show its convolution op-
eration is the key to prediction performance.

However, there are still limitations in the effectiveness of multi-
modal fusion and GCNs. First, existing GCN studies (Kazi et al.,
2019; Kipf and Welling, 2017; Ktena et al., 2018; Parisot et al.,
2018; Zhang et al., 2019) for disease prediction use whole popula-
tion (including labelled subjects in the training set and unlabeled
subjects in the test set) to construct a graph, but fail to consider
the difference between disease status in those labelled subjects.
Ignoring disease status on graph affects convolution performance
and eventually deteriorates system training. Second, the existing
works estimate edge weights by fusing similarity between imaging
information and distance between non-imaging information. How-
ever, the similarity between imaging information are roughly com-
puted based on the correlation distance between feature vectors,
which affects convolution performance, especially when SMC and
MCI have subtle differences among feature vectors. Third, the ex-
isting multi-modal GCN (Zhang et al., 2019), composed of multi-
ple GCN frameworks for feature learning and then concatenating
multi-modal features for disease prediction, ignores the comple-
mentary relationship between fMRI and DTI data in graph con-
struction.
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Table 1
The notation.

Notation  Size Description

n Number of subjects

N Number of brain ROIs

m Number of selected features by using recursive feature
elimination (RFE)

K Polynomial order

e Distance of gender

TE Distance of equipment type

w, Combined weight coefficient for functional score

Wy Combined weight coefficient for structural score

p() Calculation of correlation distance

Sim(-) Calculation of similarity

Score,f, Functional score of subject v

Scores, Structural score of subject v

Ef 1 xm  Functional feature vector of subject v

E 1 xm  Structural feature vector of subject v

F,f 1 xm  Functional feature vector of subject u

E; 1 xm  Structural feature vector of subject u

X/ nxm Functional feature matrix

Xs nxm Structural feature matrix

Asf nxn Similarity-aware functional adjacency matrix

AS nxn Similarity-aware structural adjacency matrix

Asfa nxn Similarity-aware adaptive functional adjacency matrix

A, nxn Similarity-aware adaptive structural adjacency matrix

Agac nxn Similarity-aware adaptive calibrated adjacency matrix
Scores’ nx 1 Functional score vector
Scores® nx 1 Structural score vector

To overcome the above limitations, we design a similarity-
aware adaptive calibrated GCN, which uses two GCN models cor-
responding to fMRI and DTI data and balances their outputs via
a combined weight mechanism. Three mechanisms are proposed
in this paper. First, similarity-aware receptive fields are designed
on graphs to consider the difference of disease status. Specifi-
cally, every labelled node representing a training sample is only
connected with those labelled nodes with the same disease sta-
tus. Every unlabeled node representing a test sample may con-
nect with every node on a graph. Second, we propose an adap-
tive mechanism, which uses the difference between pre-scores
to replace correlation distance to estimate more accurate simi-
larity. Specifically, we use the initial similarity calculated based
on correlation distance to construct an initial graph and pre-train
GCN using training samples. Then we use the pre-trained GCN
to score all subjects. The difference between these pre-scores is
used to form the updated similarity. This is motivated by pre-
trained GCNs leading to similarity metrics better than correlation
distance. Third, based on the relevant and complementary rela-
tionship between fMRI functional network and DTI structural net-
work, we propose a calibration mechanism to fuse functional and
structural information into edges. We validate our method by us-
ing the ADNI (https://ida.loni.usc.edu) public database. Experimen-
tal results show that our method achieves promising performance
for predicting SMC and MCIL

2. Methodology

Fig. 1 shows an overview of our proposed prediction frame-
work. Our objective is to predict the status of an individual de-
scribed as a node binary classification problem, where each node
is assigned as a label 1 € {0, 1}. For n subjects, each subject is rep-
resented by fMRI, DTI and phenotypic information (e.g., gender and
equipment type). Based on fMRI and DTI data, we construct a func-
tional connection (FC) brain network and a structural connection
(SC) brain network for every subject. To fuse fMRI and DTI infor-
mation, we develop two graphs corresponding to two GCN models,
and each GCN model is trained and utilised independently. A graph
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Fig. 1. General framework of our proposed disease deterioration prediction algorithm. (a) Supposing there are total n subjects in our classification task. We get n functional
networks, and n structural networks, with every subject, has a functional network and a structural network. (b) There are n nodes on a graph with every node representing
a subject, and we construct the functional graph with every node represented by functional features and construct the structural graph with every node represented by
structural features. (c) After adaptive calibrated GCN, we get a n x 1 functional score vector Scores’ and a n x 1 structural score vector Scores®. Every functional score
represents the predicted result of its corresponding subject based on its functional features, and a structural score represents the predicted result based on a subject’s
structural features. (d) We use a combined weight mechanism to finally form a n x 1 score vector as the final predicted results.

Table 2

Detailed information about the used dataset.
Group SMC(44)  EMCI(44) LMCI(38)  NC(44)
Male/Female 17M/27F  22M[22F  19M/19F  22M/[22F
Age (mean+SD) 763454  76.5+6.1 76.0+7.7  76.5+£4.5
GE/SIEMENS/PHILIPS ~ 21/21/2 9/30/5 26/9/3 14/25/5

is described as G = {V, ¢, A}. V represents vertices, and each vertex
represents a subject, & represents edges and each edge models the
similarity between the corresponding subjects, and all edges com-
pose adjacency matrix A. In this paper, we use feature matrix X to
represent features of all subjects on the graph. Each row of X rep-
resents the selected features of its corresponding subject, and the
number of matrix rows matches with the number of total subjects
on a graph.

Generally, we divide our framework into four parts. First, we
construct FC and SC brain networks for every subject. Second, we
construct functional and structural graphs. Our similarity-aware re-
ceptive fields are proposed in this part. Third, we design an adap-
tive calibrated GCN to output scores of subjects. We propose an
adaptive mechanism and a calibration mechanism to improve the
adjacency matrix in this part. Last, we employ a combined weight
mechanism to balance functional scores and structural scores to
accomplish our classification task.

2.1. Dataset description and brain network construction

2.1.1. Dataset

A total of 170 subjects from the ADNI database are used for
training and testing, including SMC, early mild cognitive impair-
ment (EMCI), late mild cognitive impairment (LMCI), and normal
control (NC). The gender, age and equipment type are used as phe-
notypic information in this paper, and the detailed information is
shown in Table 2.

Our prediction task is a node binary classification problem.
Therefore, we carry out our method on the six tasks, including NC

vs. SMC, NC vs. EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI,
and EMCI vs. LMCI.

2.1.2. Functional brain network construction

For fMRI data preprocessing, we apply the standard procedures
including using the GRETNA toolbox (Wang et al., 2015) to prepro-
cess our fMRI time-series signal. We discard the first ten acquired
fMRI volumes and correct the remaining 170 volumes by apply-
ing mean-subtraction. We apply head movement correction, per-
form spatial normalisation with DARTEL, and perform smooth fil-
tering by employing the Gaussian kernel. Finally, we regress the lo-
cal mean time-series, and use the automated anatomical labelling
(AAL) (Tzourio-mazoyer et al., 2002) to segment brain space into
90 regions of interests (ROIs). After the above process, we obtain
the time-series of 90 ROIs for each individual.

For constructing a functional brain network, Pearson’s correla-
tion (PC) is used, which captures the relationship between pair
ROIs, and sparse representation (SR) method, which establishes
multi-ROI relationship. Based on SR method, many popular meth-
ods have been proposed and applied, such as weighted sparse rep-
resentation (WSR) (Yu et al., 2017), strength-weighted sparse group
representation (WSGR), Group sparse representation (GSR)(Zhang
et al,, 2017), strength and similarity guided GSR (SSGSR)(Zhang
et al., 2018), and sparse low-rank (SLR) graph learning (Qiao et al.,
2016). The reviewed literature (Qiao et al., 2018) summarises the
above methods. In this paper, we do not focus on the methods
of brain network construction and use the reliable and straightfor-
ward PC method to construct our FC network. After brain network
construction, we finally get a 90 x 90 brain functional network for
every subject.

2.1.3. Structural brain network construction

For DTI structural brain network, we use PANDA Toolbox (Goto
et al,, 2013) to get the global brain deterministic fibre bundle. We
obtain the fractional anisotropy (FA) as feature vectors and use the
AAL template on DTI image to divide the brain space into 90 ROIs.
For SC network construction from DTI data, the average FA of links
between network nodes is defined as the connection weight in the
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Fig. 2. Filtering principle of the graph theory.

DTI network, and then we get a 90 x 90 SC network for every
subject.

2.14. Feature selection method

After brain network construction, we finally have a 90 x 90 FC
network and a 90 x 90 SC network for every subject. To reduce
the dimension of FC and SC brain networks, we extract upper tri-
angular matrix elements to form a 1 x 4005 feature vector for ev-
ery brain network. Then we use recursive feature elimination (RFE)
(Guyon et al., 2002) to select features. Finally, a low-dimensional
feature vector is used to represent an FC or SC brain network. For
example, for subject v, we have a low-dimensional functional fea-
ture vector va and a low-dimensional structural feature vector F;.

2.2. Graph construction

The above low-dimensional feature vectors and acquired pheno-
typic information (e.g., gender, age, and equipment type) are used
to construct graphs. We develop two GCN models with a func-
tional graph and a structural graph, respectively. Graphs include
nodes and edges, where nodes represent subjects and edges es-
tablish their connections. Specifically, every node on the functional
graph is represented by its corresponding subject’s functional fea-
ture vector. Every node on the structural graph is represented by
its corresponding subject’s structural feature vector. Edge connec-
tions and edge weights are the keys in graph theory as they decide
which nodes are used to perform convolutions and correspond-
ing convolutions coefficients, therefore they attract much atten-
tion (Liu et al., 2019; Xu et al., 2018). The two-layer network with
a graph (Kipf and Welling, 2017) can be described as the equa-
tion Z = softmax(AReLU (AXW @)W ()) and the filtering principle
of graph theory is illustrated in Fig. 2, where A is the adjacency
matrix with normalization. We can see that a big convolution co-
efficient means big filtering effect in its corresponding feature.

In existing methods, edge connections consider gender and
equipment type with ignoring the disease status of those subjects
in the training set, and edge weights are evaluated by a computed
correlation coefficient of feature vectors. In this subsection, we de-
sign similarity-aware receptive fields to consider disease status of
those subjects in training set in terms of edge connections. In the
next subsection, we design an adaptive mechanism and calibration
mechanism to improve edge weights. For edge weights, we first
use an existing method to initialise them.

2.2.1. Edge connections based on similarity-aware receptive fields

Previous work considers gender and equipment type to estab-
lish edge connections by assigning bigger edge weights between
those subjects with the same gender and same equipment type.
Still, it fails to consider disease status of those subjects in the train-
ing set. As disease status results in differences on subjects’ features
and status of most subjects on the graph (a graph includes those
subjects in both training set and test set) are known, it is neces-
sary to consider disease status in edge connections. Hence, we de-
sign three receptive fields that incorporate knowledge on disease
status. Two receptive fields are for labelled subjects in the training
set, and one receptive field is for unlabeled subjects in the test set.
For a labelled patient, we establish its connections with all labelled
patients. For a labelled NC, we establish its connections with all la-
belled NCs. For every unlabeled subject in the test set, we ignore
to consider its disease status and establish its connections with all
other subjects. The detailed description of three receptive fields is
shown in Fig. 3.

2.2.2. Edge weights initialisation

Initial edge weights are estimated based on previous works
(Kazi et al., 2019; Kipf and Welling, 2017; Ktena et al., 2018;
Parisot et al.,, 2018; Zhang et al., 2019), which fuse similarity be-
tween imaging information and distance between non-imaging in-
formation. We use Sim(-) to denote similarity between paired sub-
jects, r¢ represents the distance of gender, and rg represents the
distance of equipment type. Based on the edge connections in
similarity-aware receptive fields in Fig. 3, the initial similarity-
aware functional adjacency matrix Asf and the initial similarity-
aware structural adjacency matrix A§ are calculated as:

Al (v.u) = Sim(F/. Ff) x (r6(Gy. Gu) + r (v, Eu)). (1)

A;(v.u) = Sim(F;. F}) x (16(Gy. Gu) + e (Ey. Eu)). (2)

where F/ and F/ are functional feature vectors of subject v and
subject u, F; and F; are their structural feature vectors, G, and
Gyrepresent their gender information,E, and E, represent their
equipment type information, r; and rg are defined as:

1, G, =Gu, 1, B, =E,
76(Cv. Cu) = {o Gy # Gy, "o B Ei) = {o E kO
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Fig. 3. Detailed description of similarity-aware receptive fields. We describe our similarity-aware fields by classifying NC and Patient. In the adjacency matrix, ‘1’ represents

connection is established, and ‘0’ represents connection is not established.

The initial similarity is estimated by calculating the correlation
distance between feature vectors as (Parisot et al., 2018):

[o(FL.E)]
- 202 ’

s ESY12
Sim(FS, ES) = exp(—[p(F”’F”)]) (4)

Sim (F,,f, Fuf) = exp

202

where p(-) is the correlation distance function, and o is the width
of the kernel.

The above initial similarity Sim(-) is used to construct the edge
weight which plays the role as a convolution coefficient in graph
theory as shown in Fig. 2. In the work (Parisot et al., 2018), the
final classification performance gets significant improvement by
combing Sim(-) with phenotypic information. The edge weight is
doubled when its corresponding two subjects have the same gen-
der and equipment type, and the edge weight is set to zero when
corresponding two subjects have the different gender and equip-
ment type. The method of intergrating phenotypic information in-
creases the difference between edge weights and the final classifi-
cation results valiudate this effectiveness.

After establishing edge connections based on our similarity-
aware receptive fields and above initial edge weights, we get the
initial similarity-aware functional adjacency matrix A{ and the ini-
tial similarity-aware structural adjacency matrix As.

2.3. Adaptive calibrated GCN

In this subsection, we develop two GCN models. One model is
used to predict disease status based on functional data, and the
other is used based on structural data. Each model is trained and
utilised independently. Specifically, we use functional data in the
training set and their corresponding labels to train a GCN model,
and then use the trained model to predict the status of all subjects.
After the process, we get a functional score vector Scores/eR™* !
to represent the predicted scores. Besides, we use the structural
data in the training set and their corresponding labels to train the
other GCN model, and also use the model to predict the status
of all subjects. After the process, we get a structural score vec-
tor Scores’sR™ 1 to represent the predicted scores. The above two
GCN models can accomplish prediction tasks independently. As in-
tegrating fMRI functional data and DTI structural data shows bet-
ter performance (Lei et al.,, 2020; Li et al., 2020b), we use a com-
bined weight mechanism method to combine their predicted re-
sults to perform the final prediction. The corresponding two com-
bined weight coefficients are set as 0. 5 in this paper according to
the experimental results.

Using the correlation distance to compute similarity in Eq. (4) is
inaccurate enough since SMC and MCI have subtle differences
among feature vectors. We propose an adaptive mechanism to im-

prove the similarity measure in view that GCN has better capabil-
ity to extract in-depth features than the correlation distance. We
develop a calibration mechanism to fuse functional and structural
data into edges. By using our adaptive calibrated mechanism, we
update our initial GCN models by pre-training and finally use the
updated GCN models to predict disease status. Our model is not
trained end-to-end, and there are two steps in our adaptive cal-
ibrated GCN. First, based on initial graphs, we train GCN models
and then use them to score every subject. Based on these scores,
we use our adaptive mechanism and calibration mechanism to
construct a new adjacency matrix and then form new graphs. Sec-
ond, based on new graphs, we train GCN models again and finally
use them to predict disease status.

2.3.1. Adaptive mechanism

Random forest-derived similarity evaluation methods (Shi et al.,
2005; Shi and Horvath, 2006) use machine learning to evaluate
similarity in unsupervised clustering tasks, which inspire us to pro-
pose an adaptive mechanism in GCN for our disease prediction.
Compared with the initial adjacency matrices, the adaptive adja-
cency matrices use score difference to replace correlation distance
for constructing more accurate edge weights. First, we construct
dual-modal GCN models with initial graphs and then pre-train
GCN models using training samples. Second, we input all subjects
to the pre-trained GCN to get their scores. We use Scores/ to rep-
resent functional score vector and use Scores® to represent struc-
tural score vector. Last, we re-compute edge weights with updated
similarity based on scores. The adaptive similarity based on scores
are calculated:

Score! — Score’, 2
Sim(F,,f,Fuf) = exp —% ,

(5)

202

Sim(ES, FS) — exp(— [Scores, — Score{,]z)

where Score{,r and Score{: denote the scores of subject v and sub-
ject u on functional data, whereas Scorej, and Score, denote their
scores on structural data. Every score is a scalar and ranges from
0 to 1, which is used to represent the predicted disease status of a
subject based on functional or structural features. In labels, we use
0 or 1 to represent the status of the subject. o is also the width
of the kernel. By Eqgs. (1), (2), (3) and (5), we finally get a more
accurate similarity-aware adaptive functional adjacency matrix A{a
and a more accurate similarity-aware adaptive structural adjacency
matrix A§;.

2.3.2. Calibration mechanism

As functional and structural information is complementary,
we propose a calibration mechanism to integrate fMRI functional
and DTI structural information. Let the symbol o represent the
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Hadamard product, based on the above similarity-aware adap-
tive functional adjacency matrix A{a and similarity-aware adaptive
structural adjacency matrix Aj;, the similarity-aware adaptive cali-
brated adjacency matrix Asqc is defined as:

Asqc = A{a © Aia- (6)

After using the calibration mechanism, we form a similarity-
aware adaptive calibrated adjacency matrix Aggc. It is worth men-
tioning that the adjacency matrix is further normalized using
Eq. (7). After this, in the normalized adjacency matrix, the sum of
every row of elements is set to 1.

Asac (i, j) = Asac (i, j)/ ZASHC(L k. (7)

k=1

2.3.3. Graph convolutional network architecture

In GCN, spectral theory improves adjacency matrix As, by ap-
plying the convolution of Fourier transform and Taylor's expan-
sion formula to achieve an excellent filtering effect and computa-
tional efficiency. The spectral convolution (Defferrard et al., 2016;
Shuman et al., 2013) on graphs can be described as the multi-
plication of a signal ¥ € R" (a scalar for every node) with a filter
g = diag(f) by:

K
Zoxx =Ugy(AU'x =", Ty (L)x. (8)
k=0

where U is the matrix of eigenvectors and is computed from for-
mula L=1Iy— D*%AHCD*% =UAUT. Iy and D are, respectively, the
identity matrix and the diagonal degree matrix. gy (A) is well ap-
proximated by a truncated expansion in terms of Chebyshev poly-
nomials to the K™-order. 6y, is a vector of Chebyshev coefficients,
T, is Chebyshev polynomials function, L = 2/AmaA — Iy.

After spectral convolution, similarity- aware adaptive calibrated

adjacency matrix Agqc iS approximated by Z 6,T,.(L). By adjusting

polynomial order K, it can get a different ﬁlter effect. For example,
the performance reaches the best with K= 3 or 4 in prediction
tasks (Kipf and Welling, 2017; Parisot et al., 2018).

Our dual-modal GCN structure is illustrated in Fig. 1. Every GCN
model consists of two graph convolution layers activated by rec-
tified linear unit (ReLU) function and one softmax output layer.
The functional and structural GCN models are trained using the
whole population graph as input. After dual-modal adaptive cal-
ibrated GCN, we get an updated functional score and structural
score for every subject. Namely, we use a combined weight mech-
anism to combine the two scores to perform the final prediction.
Specifically, the final predicted score for a subject v is denoted by
Wy x Score£ + wy x Scorej, . According to our experimental results
in the experimental section, we set w; = 0.5 and w, = 0.5 for our
all prediction tasks. For example, for NC vs. SMC, the label of an
SMC subject is set 1, and the label of an NC is set to zero. The
predicted result of a subject after GCN models is represented by a
score which ranges from 0 to 1. A subject with a predicted score
ranging from 0 to 0.5 is regarded as an NC, and a subject with a
predicted score ranging from 0.5 to 1 is regarded as an SMC.

3. Experiments and results

We evaluate the proposed method on the ADNI database using
a 10-fold cross-validation strategy. As our main contribution is to
improve traditional GCN for predicting SMC and MCI, the GCN pa-
rameters of all strategies in this paper are fixed and chosen accord-
ing to previous work (Parisot et al., 2018). Parameters details are as
below: dropout rate is 0.1, regularisation is 5 x 104, the learning
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rate is 0.005, the number of epochs is 200, and the default polyno-
mial order is 3. Different from (Parisot et al., 2018), to reduce the
number of parameters in GCN and avoid overfitting, the number of
neurons per layer is set as 8 and the number of the selected fea-
tures is set as 50. For dual-modal GCN, w; =0.5 and w, = 0.5. In
this section, we refer to the graph constructed from the phenotypic
data, including gender and equipment type information. Given the
small size of our dataset and that age reduces the performance
(Parisot et al., 2018), we ignore age information in GCN. Prediction
accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under
the curve (AUC) are used as evaluation metrics. Six binary clas-
sification experiments including NC vs. SMC, NC vs. EMCI, NC vs.
LMCI, SMC vs. EMCI, SMC vs. LMCI and EMCI vs. LMCI validate our
prediction performance.

We divide this section into three parts. First, we test the per-
formance of our three mechanisms and compare them with other
popular traditional algorithms. Second, we describe the effect of
our similarity-aware receptive fields and adaptive mechanism on
the adjacency matrix. Third, we describe the effect of our adja-
cency matrix on feature values. The critical parameters of the pro-
posed method are described in the discussion section.

3.1. Classification performance of our method

The proposed prediction framework is compared to other
four related popular frameworks, including GCN (Parisot et al.,
2018), multiple layer perception (MLP), random forest (RF)
(Breiman, 2001) and SVM(Cortes and Vapnik, 1995). The param-
eters are set according to work by (Parisot et al., 2018), the pa-
rameters of MLP are the same with GCN implementation, RF and
SVM use the scikit-learn library implementation (Pedregosa et al.,
2011). The parameters of RF are: The number of trees is 500, and
the maximum depth is three. The parameters of SVM are: The ker-
nel is ‘sigmoid’, the kernel coefficient is 0.1, the regularisation pa-
rameter is 0.1, and the maximum number of iterations is 200.

To describe our three mechanisms in detail, similarity-aware
receptive fields, adaptive mechanism and calibration mechanism
are named as ‘S, ‘A’ and ‘C’, respectively. For example, the GCN
with similarity-aware receptive fields is represented by S-GCN,
SA-GCN represents the GCN with similarity-aware receptive fields
and adaptive mechanism, and SAC-GCN represents similarity-aware
adaptive calibrated GCN. The results of the experiment are shown
in Table 3. ROC curves comparison is shown in Fig. 4.

We use the most common approach to construct a brain net-
work in this paper. As shown in Table 3, the performance of tra-
ditional classifiers (MLP, RF, SVM) based on our brain networks is
poor, and there is only a few variation with less than 2.73% dif-
ference in mean ACC of six tasks between the best and the worst
performance. SVM shows the best performance with mean ACC of
six tasks based on dual-modal data reaching to 73.75%. Compared
with the above traditional methods, the performance of GCN is
much improved. Specifically, compared with the best performance
in traditional classifiers based on fMRI, DTI and dual modalities,
the mean ACC of six tasks increase by 5.67%, 4.50% and 4.95%, and
the mean AUC of six tasks increase by 7.23%, 7.18% and 9.93%. The
performance comparison follows the previous work (Parisot et al.,
2018), and it validates the effectiveness of graph theory on classi-
fication. For the above six classification tasks based on dual-modal
GCN, the performance of NC vs. SMC is the worst, and the perfor-
mance of NC vs. LMCI is the best.

Because of the effectiveness of GCN and shortcomings of ex-
isting researches, we propose three mechanisms to improve GCN
in this paper. First, we propose similarity-aware receptive fields to
consider disease status in edge connections. As Table 3 shows, the
performance of S-GCN improves performance compared with GCN.
Specifically, based on fMRI, DTI and dual modalities, the mean ACC



X. Song, E Zhou, A.E. Frangi et al.

Medical Image Analysis 69 (2021) 101947

Table 3
Disease prediction performance of different methods in our six tasks.
NC vs. SMC NC vs. EMCI NC vs. LMCI
Modal Method
ACC () SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC
fMRI  MLP 59.09 61.36 56.81 63.58 6250 6136 62.06 68 65.85 65.78 6590 7297
RF 60.22 65.91 5454 6834 6590 5227 7954 7051 6829 6052 75 70.87
SVM 63.63 68.18 59.09 69.21 64.77 6363 63.63 6875 69.51 63.15 75 79.67
GCN 70.45 84.09 56.81 7639 68.18 7954 56.81 73.61 7195 7105 7272 76.67
S-GCN 72.72 77.27 68.18 81.66 69.31 5227 8636 7412 73.17 7105 75 78.77
SA-GCN 76.13 79.54 7272 8481 7159 7954 6590 7944 8048 7631 84.09 91.27
SAC-GCN  77.27 81.81 7272 8037 75 84.09 6591 8094 8414 7894 88.63 92.64
DTI MLP 67.63 68.18 59.09 74.07 7045 63.63 7727 8495 73.17 7105 75 84.99
RF 65.63 7045. 5681 6932 69.31 7045 68.18 7252 7317 73.68 7272 71.79
SVM 71.59 86.36 56.81 8435 6931 7272 6590 71.82 7195 7105 7272 80.32
GCN 72.72 75 70.45 83.88 7272 7727 68.18 80.94 76.82 7894 75 87.86
S-GCN 75 88.63 6136 8481 7386 7727 7045 8290 7682 7894 75 90.43
SA-GCN 79.54 86.36 7272 90.03 7727 8636 68.18 85.80 84.14 8421 8409 91.09
SAC-GCN  81.81 88.63 75 8936 81.81 8636 77.27 8889 87.80 86.84 86.63 91.33
Dual  MLP 68.18 81.81 5454 7583 7159 7045 7272 77.69 7560 73.68 7727 86.42
RF 67.04 72.72 6136 7195 7272 75 7045 7333 76.82 7631 77.27  84.15
SVM 73.86 86.36 6136 7676 7159 75 68.18 73.14 73.17 7368 7272  80.08
GCN 76.13 86.36 6590 8822 75 7727 7555 80.73 79.26 7894 79.54 89.71
S-GCN 78.40 88.63 68.18 86.00 76.13 7954 7272 8332 8292 8157 84.09 89.83
SA-GCN 81.81 86.36 7727 9029 7954 8863 7045 86.67 8536 81.57 88.64 89.53
SAC-GCN  84.09 88.63 79.54 89.67 8522 9090 7954 89.82 89.02 8947 8863 92.88
Modal Method SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI
ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC
fMRI  MLP 60.22 65.90 5454 6343 5883 4473 7045 6435 6585 71.05 6136 70.22
RF 63.63 65.90 6136 66.99 6197 57.07 7727 60.19 62.19 6578 59.09 66.33
SVM 64.77 56.81 7272 6798 6463 6315 6590 71.11 67.07 5526 7727 71.65
GCN 72.72 77.27 68.18 8337 7195 5526 8636 82.06 73.17 97.73 5454 79.67
S-GCN 75 79.54 7045 84.64 73.17 5526 88.63 82.83 76.82 92.10 63.63 89.11
SA-GCN 77.27 84.09 7045 86.57 76.82 63.15 88.63 8589 78.04 9473 63.63 8248
SAC-GCN  80.68 79.54 81.81 8931 7682 63.15 88.63 85.89 79.26 84.21 75 90.67
DTI MLP 68.18 68.18 68.18 75 70.73 6842 7272 8116 67.07 60.52 7272  69.08
RF 70.45 81.81 59.09 7960 73.17 6578 79.54 79.13 6829 6842 68.18 70.10
SVM 70.45 65.90 75.00 7526 7439 6842 7954 79.01 73.17 6842 7727 7554
GCN 79.54 79.54 79.54 9339 81.70 7894 84.09 8439 7439 8947 6136 7895
S-GCN 80.68 84.09 7727 89.88 8292 7894 8636 9390 78.04 9473 63.63 8248
SA-GCN 84.09 84.09 84.09 9158 8414 8136 82.66 89.71 8048 8947 7272 88.10
SAC-GCN  85.22 88.63 81.81 92.05 86.58 8421 88.63 9569 8292 9473 7272 94.14
Dual  MLP 69.31 70.45 68.18 7386 7195 7631 68.18 83.07 69.51 6578 7272  70.57
RF 71.59 70.45 7272 7934 7560 71.05 7954 80.74 7195 7368 7045 7213
SVM 72.72 77.27 68.18 7639 7560 6842 81.81 80.14 75.60 6578 84.09 77.57
GCN 80.09 77.27 8131 8879 8270 8421 7954 86.90 79.26 9473 6590 89.35
S-GCN 82.95 86.36 79.54 9432 84.14 8157 8636 8882 81.70 92.10 7272  83.55
SA-GCN 85.22 90.90 79.54 9473 86.58 8421 88.63 9569 8292 9473 7272 94.14
SAC-GCN  88.63 95.45 81.81 9556 87.80 8421 9090 90.25 86.58 92.10 81.81 94.26

of S-GCN of our six tasks increase by 1.96%, 1.57% and 2.30%, the
mean SEN increase by -6.24%, 3.90% and 1.83%, the mean SPE in-
crease by 9.47%, -0.75% and 2.64%, and the mean AUC increase by
3.22%, 2.49% and 0.35%. The above comparison results validate that
considering disease status is essential in graph construction. By us-
ing similarity-aware receptive fields on dual modalities, the final
performance of NC vs. LMCI gets the highest improvement with
ACC increased by 3.66%. In contrast, the ACC of the remaining tasks
increased by 2.27%, 1.13%, 2.86%, 1.44%, and 2.44%.

Second, we propose an adaptive mechanism to improve edge
weights. As shown in Table 3, based on similarity-aware recep-
tive fields, adaptive mechanism yields improved results. Specifi-
cally, based on fMRI, DTI and dual modalities, the mean ACC of
SA-GCN compared with S-GCN increase by 3.35%, 3.72% and 2.53%,
the mean SEN increase by 8.37%, 1.54% and 2.77%, the mean SPE
increase by 1.13%, 5.06% and 2.27%, and the mean AUC increase by
3.22%, 1.98% and 4.20%. The above comparison results show that
combined our adaptive mechanism with similarity-aware receptive

fields further improves performance. By using the adaptive mecha-
nism on dual modalities, the final performance of NC vs. SMC and
NC vs. EMCI gets the most significant improvement with ACC in-
creased by 3.42% and 3.41%. The ACC of the other tasks increases
by 2.44%, 2.27%, 2.43% and 1.22%. After using similarity-aware re-
ceptive fields and adaptive mechanism, we can get the mean ACC
of 83.57% for our six tasks.

Third, we propose a calibration mechanism to fuse functional
and structural information into the adjacency matrix. As shown in
Table 3, SAC-GCN yields improved results compared with SA-GCN.
Specifically, based on fMRI, DTI and dual modalities, the mean
ACC of SAC-GCN compared with SA-GCN increase by 2.14%, 2.74%
and 3.31%, the mean SEN increase by -0.93%, 2.92% and 2.39%, the
mean SPE increase by 4.54%, 2.93% and 4.16%, and the mean AUC
increase by 1.56%, 2.52% and 0.23%. The above comparison results
show that our calibration mechanism can improve performance
when functional adjacency matrix and structural adjacency matrix
have high precision. Eventually, the mean ACC, SEN, SPE and AUC
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Fig. 4. ROC curves comparison of different scenarios.

of SAC-GCN of our six tasks is 86.89%, 90.12%, 83.70% and 92.07%,
respectively.

Compared with the results based on fMRI data, it shows bet-
ter prediction performance based on DTI data. Specifically, for the
three traditional methods (MLP, RF and SVM), the mean ACC of our
six tasks increase by 7.48%, 6.30% and 6.08%, and the mean AUC
of our six tasks increase by 11.11%, 6.53% and 6.32%. For GCN se-
ries methods (GCN, S-GCN, SA-GCN and SAC-GCN), the mean ACC
of our six tasks increases by 4.91%, 4.52%, 4.88% and 5.49%, and
the mean AUC of our six task increases by 6.27%, 5.54%, 4.30% and
5.27%. We employ a combined weight mechanism to fuse the re-
sults of dual-modal data for the final disease prediction. Compared
with the prediction results based on single modal DTI data, the
prediction results based on dual-modal data show improvement.
Specifically, for GCN methods (GCN, S-GCN, SA-GCN and SAC-GCN),
the mean ACC of our six tasks increase by 2.42%, 3.15%, 1.96% and
2.53%, respectively.

For our three mechanisms, similarity-aware receptive fields
consider disease status in graph construction and adaptive mecha-
nism uses scores difference to replace correlation distance for con-
structing a more accurate adjacency matrix. The two appealing
mechanisms are not limited to our tasks, and they may extend to
other prediction tasks (e.g., AD, ASD and PD).

3.2. Effect of similarity-aware receptive fields and adaptive
mechanism on adjacency matrix

The adjacency matrix is the key of graph theory, which is a
mathematical description of edges and edge weights, and plays the
role as a filter (Kipf and Welling, 2017; Parisot et al., 2018). Specif-
ically, after applying spectral convolution as Eq. (8), similarity-

aware adaptive calibrated adjacency matrix Asqc is further approx-

K .
imated by Y 6,T,(L). A row of elements of the approximated ma-
k=0

K .
trix Y 6,T,(L) can be regarded as the convolution coefficients of
k=0

its related subjects. Our three mechanisms play the role to improve
the adjacency matrix and therefor improve the convolution coeffi-
cients, and experimental results in the above subsection validate
their effectiveness. In this subsection, we describe how similarity-
aware receptive fields and adaptive mechanism affect the adja-
cency matrix.

The proposed similarity-aware receptive fields consider the dis-
ease status and constrain the receptive field of labelled nodes to
those nodes with the same status, which means we are establish-
ing connections only between those subjects with the same status.
Different from similarity-aware receptive fields focuing on edge
connections, the adaptive mechanism is proposed to improve edge
weights. Edge weights represent convolution coefficients, where a
considerable weight means its corresponding two subjects have
better similarity and a significant impact on each other. To describe
the effect of similarity-aware receptive fields and adaptive mecha-
nism, we pick up five subjects from the training set randomly for
every disease status in every prediction task. Our prediction task
is a node binary classification problem, so there are ten subjects to
be picked up for every prediction task. Fig. 5 visualises their corre-
sponding edge weights in an adaptive functional adjacency matrix
and adaptive structural adjacency matrix. The two adaptive adja-
cency matrices have been processed by normalisation.

Fig. 5 shows that parts of edge weights are zeros, which is the
effect of similarity-aware receptive fields that establish edge con-
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Fig. 5. Effect of similarity-aware receptive fields and adaptive mechanism on edge weights in our six prediction tasks. In our six tasks, we pick up ten subjects randomly
from the training set (five subjects for each disease status) and show their edge weights with all subjects on the graph. In every subFig., the abscissa represents subjects’
indices on the graph, and the ordinate represents a subject’s edge weights. Blue lines represent the edge weights constructed by using the traditional method, and red lines
represent the edge weights constructed by using our similarity-aware receptive fields and adaptive mechanism.
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The standard deviations of the edge weights with and without our adaptive mechanism across our six tasks. (x10-2). Cases 1-10 represent ten subjects in the corresponding
task, and the ten subjects are the selected subjects in Fig. 5. “Difference (i.e., A/ — A%)" represents the difference of edge weights between fMRI functional adjacency matrix

and DTI structural adjacency matrix.

Case Modality NC vs. SMC NC vs. EMCI NC vs. LMCI SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI
None/Adapt None/Adapt None/Adapt None/Adapt None/Adapt None/Adapt
1 fMRI 1.83/1.86 1.79/1.81 1.81/1.87 1.66/1.62 1.62/1.70 1.56/1.59
DTI 3.07/4.13 3.07/4.13 3.16/4.00 2.83/3.15 2.98/3.50 2.90/3.33
Difference 2.51/3.88 2.61/3.95 2.68/3.69 2.58/2.88 3.03/3.14 2.61/2.96
2 fMRI 1.67/1.69 1.69/1.68 1.71/1.72 1.66/1.72 1.66/1.69 1.64/1.67
DTI 2.97/3.39 3.09/3.37 3.39/3.96 2.95/2.97 3.13/3.71 3.45/3.79
Difference 3.08/2.32 3.20/2.36 2.94/3.52 2.52/2.59 2.71/3.34 3.06/3.76
3 fMRI 1.87/1.98 1.85/1.89 1.85/1.98 1.84/1.88 1.67/1.71 1.82/1.87
DTI 4.59/4.65 4.59/4.65 3.43/4.93 4.12/4.69 3.04/3.91 3.21/5.07
Difference 4.01/4.31 4.04/4.32 4.66/4.05 4.53/3.93 2.51/3.65 3.91/4.49
4 fMRI 1.92/1.95 1.89/1.90 1.93/1.94 1.59/1.62 1.59/1.67 1.62/1.67
DTI 3.01/3.44 3.01/3.44 3.25/4.01 2.15/2.88 2.78/3.13 2.90/3.52
Difference 2.52/2.87 2.46/2.87 2.50/3.47 1.71/2.27 2.32/3.21 2.35/3.06
5 fMRI 1.84/1.94 1.85/1.86 1.91/1.92 2.42(2.54 1.60/1.64 2.49/2.53
DTI 2.71/3.22 2.71/3.22 3.62/3.92 3.76/4.16 2.93/3.76 4.89/5.27
Difference 2.38/2.86 2.02/2.68 3.22/3.48 2.80/3.43 2.16/3.61 4.45/4.52
6 fMRI 1.57/1.62 1.94/1.99 2.06/1.96 2.04/2.07 0.24/0.31 1.96/2.05
DTI 4.08/4.71 3.27/3.15 3.14/3.73 3.79/3.95 3.14/3.73 3.14/3.73
Difference 3.65/3.83 2.50/2.54 2.86/3.58 3.45/3.33 3.24/3.73 2.96/3.55
7 fMRI 1.71/1.75 2.03/2.09 2.15/2.13 2.07/2.09 0.27/0.55 2.09/2.15
DTI 3.18/4.51 3.25/3.66 3.54/4.78 3.03/3.84 3.54/4.78 3.54/4.78
Difference 2.73/4.29 2.65/3.13 3.27/4.48 2.38/3.41 3.71/4.72 3.13/4.63
8 fMRI 1.89/1.93 1.63/1.69 1.93/2.00 1.62/1.67 1.93/1.96 1.93/2.06
DTI 2.92/3.11 2.93/3.49 3.68/3.61 3.15/3.56 3.61/3.68 3.68/4.12
Difference 2.39/2.68 2.59/3.27 3.14/3.16 2.78/3.32 2.90/3.09 2.91/3.16
9 fMRI 1.66/1.68 1.62/1.65 1.17/1.74 1.56/1.63 1.72/1.85 1.78/1.83
DTI 2.76/3.06 2.80/3.73 3.01/3.67 3.27/3.48 3.01/3.67 3.01/3.67
Difference 3.11/2.43 2.65/3.39 2.41/3.07 2.91/3.07 2.61/3.16 2.71/3.28
10 fMRI 1.94/1.97 1.95/2.11 1.97/2.00 1.89/1.99 1.88/1.96 1.91/1.95
DTI 3.40/3.44 3.43/3.63 3.72[2.78 3.12/3.66 3.72/3.78 3.72/3.78
Difference 2.55/2.59 3.06/2.66 3.60/3.42 2.35/2.86 3.20/3.45 3.29/3.34

nections only between those subjects with the same status. For ex-
ample, for NC vs. SMC, in the first subfigure, we describe an NC
subject’ edge weights with all 88 subjects on the graph. As ab-
scissa represents subject’s indices where indices 1-44 represent 44
NCs and indices 45-88 represent 44 SMCs, the NC's edge weights
with subjects 1-44 are mostly non-zeros whereas its edge weights
with subjects 45-88 are all zeros. Part of subjects are test samples,
and edge weights with these test samples are all set to zero.
Compared with a little difference between edge weights com-
puted by traditional methods Kazi et al., 2019; Ktena et al., 2018;
Parisot et al., 2018; Zhang et al., 2019), our adaptive mechanism in-
creases the difference seen in every subfigure in Fig. 5. Specifically,
the red lines, which represent edge weights based on our adaptive
mechanism, show large fluctuations, whereas the blue lines show
small fluctuations. The standard deviations of these fluctuations
are described in Table 4. The standard deviations based on our
adaptive mechanism are larger than those based on the traditional
method. In the work (Parisot et al., 2018), by including phenotypic
information as Eqs. (1) and ((2), the edge weight is doubled when
its corresponding two subjects have the same gender and equip-
ment type, and the edge weight is set to zero when corresponding
two subjects have the different gender and equipment type. This
increases the difference between edge weights, which is validated
to be useful to improve the final classification performance. Simi-
lar to the work (Parisot et al., 2018), our adaptive mechanism also
increases the difference and the final performance also gets im-
provement as shown in Table 3. This suggests that our adaptive
mechanism has a better ability to explore the similarity relation-
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ship between subjects. Comparing edge weights in the DTI struc-
tural adjacency matrix with those edge weights in the fMRI func-
tional adjacency matrix for the same subject, they show obvious
differences. In Table 4, we use “Difference” to represent the dif-
ferences between edge weights in fMRI functional adjacency ma-
trix and DTI structural adjacency matrix. Standard deviations show
there are many differences between edge weights in fMRI func-
tional adjacency matrix and DTI structural adjacency matrix. Our
adaptive mechanism usually increases the differences. The differ-
ences support the viewpoint that fMRI functional information and
DTI structural information have good complementarity (Lei et al.,
2020; Li et al., 2020b), and it also agrees with the excellent perfor-
mance of our calibration mechanism and dual-modal GCN.

3.3. Effect of our adjacency matrix on feature values

Fig. 6 visualises the top 10 most discriminative functional fea-
tures and the top 10 most discriminative structural features and
visualises feature values after pre-multiplying adjacency matrix.
Fig. 7 shows t-SNE visualisation results of feature maps, and the
detailed effect on the mean and standard deviation of feature val-
ues is shown in Tables 5-6. As FC and SC brain networks are usu-
ally represented by the selected most discriminative features from
1 x 4005 feature vectors, we use the indices of selected features in
1 x 4005 vector to represent them in this subsection. A features’
index represents the relationship between pair ROIs whereas cor-
responding feature value represents the relationship weight.

As shown in Fig. 6, there are different noise levels among dif-
ferent features. For example, the noise in the number 3915 fMRI
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feature values. The blue line represents original feature values, and the red line represents feature values after pre-multiplying adjacency matrix Agq.

1



X. Song, E. Zhou, A.F. Frangi et al.

Medical Image Analysis 69 (2021) 101947

X AX 4.X AuX AucX X AX 1,X AX AguX
® ° °
o * L] o’. . e " L ® o .. . o o o
° e & ° o0 00: fo ® - ‘o ® " 4
" o © e (% ® o [ 4 ‘ e
° S 8 @ L4
NC vs. SMC NC vs. EMCI
X AX AX AuX AuX X AoX AX AX AuX
® ° L] ®
.00. . ° . -, i e % ., e ° ’ . %o
* . o 0 ° XL s ° gy
° o’ R s ® oo P °® % o s °
. ° ° s p< e
NC vs. LMCI SMC vs. EMCI
X AX AX AuX AgacX X AX AX AX AuX
° L4 ° L]
.O: .0.. b .o. p .Q. ..o’ 'o. .S "
. o. L ° o**® o ® Ve - e (T o e o
° °
L] LI LS ° I ° )
SMC vs. LMCI EMCI vs. LMCI
(a) t-SNE visualisation results based on fMRI data.
X AgX AX AuX AgeX X AgX AX AuX Ay X
'. - @ L4 @ ° ® @ LY L4 oo
o * s % 5 0\0 oo ° o* ‘. o0 '.o ° PN
. oo ® Pe o e%e 24 oo
° b4 ° ° .o - . ® L) LD
NC vs. SMC NC vs. EMCI
X AoX AX AaX AgacX X AgX AX AuX A X
o L] s ] ° ° °
o, ° %00 F A L ° ® o o
R N Ty, & LI S B I S
ee® °*°° ® ° . ° e ° o
°
NC vs. LMCI SMC vs. EMCI
X AX AX AaX AgcX X AgX AX AuX AqcX
. L] o © . o L4
.i 0, ® %e o0 ee . o0 o % \o. ..0 ®
o ] e SIS i e o e . 3 - ]
s * ° . ° L L] °® % L] ° °
SMC vs. LMCI EMCI vs. LMCI
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Fig. 7. The t-SNE visualisation results of fMRI and DTI feature maps in different tasks. The effect is shown by pre-multiplying the adjacency matrices Ag, As, Asq, and Asgcon
X. X is a feature matrix, which includes feature values of test subjects. As there are 82 or 88 subjects in our tasks and we use the 10-fold cross-validation strategy, there are
usually eight subjects in the test set for every fold, Hence, the t-SNE visualisation results are based on the eight test samples. Ay represents the adjacency matrix constructed
based on the traditional method, As represents the adjacency matrix constructed based on the traditional method and our similarity-aware receptive fields, As, represents
the adjacency matrix constructed based on our similarity-aware receptive fields and our adaptive adjacency matrix, and A, represents the adjacency matrix constructed
based on our similarity-aware receptive fields, adaptive mechanism and calibration mechanism.

feature for NC vs. SMC is small, whereas the noise in the num-
ber 3797 fMRI feature is big. The noise in the number 3886 fMRI
feature for SMC vs. LMCI is small, whereas the noise in the num-
ber 1153 fMRI feature is big. The noise level of the same feature
between different disease statuses is consistent. For example, the
noise level in the number 3519 fMRI feature for NC vs. SMC fol-
lows its noise level for NC vs. EMCI. The noise level in the number
251 DTI feature for NC vs. EMCI follows its noise level for NC vs.
LMCI. By pre-multiplying our adjacency matrix Asqc, the noises in
all fMRI and DTI features are suppressed, as shown in Fig. 6 that
red line has a small fluctuation.

12

Fig. 7 describes the feature visualisation results of graph theory
on the test set, and we have compared the effect of four kinds of
adjacency matrices on feature values. As there are 82 or 88 sub-
jects for every task and we use a 10-fold cross-validation strat-
egy, there are typically eight subjects in the test set. As shown in
Fig. 7, compared with X, ApX has a better visualisation result for
some tasks. Specifically, for NC vs. SMC, SMC vs. EMCI, EMCI vs.
LMCI based on fMRI data and for NC vs. SMC, NC vs. LMCI, SMC
vs. EMCI, SMC vs. LMCI, EMCI vs. LMCI based on DTI data, it has a
better visualisation result. For NC vs. EMCI, NC vs. LMCI, SMC vs.
LMCI based on fMRI data and for NC vs. EMCI based on DTI data,
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Table 5

Effect of our adjacency matrix As on the top 10 most discriminative fMRI feature values in our six classification tasks. We compare fMRI features’ mean values and standard
deviations with or without pre-multiplying adjacency matrix Asc, and compare fMRI features’ mean values between different disease status. The mean column is measured
on AsacX, Asqc Tepresents our adaptive calibrated adjacency matrix, and X represents the top 10 fMRI feature values of all subjects on the graph.

NC vs. SMC NC vs. EMCI NC vs. LMCI
Feature X Asec X Means Feature X Agec X Means Feature X Agac X Means
index (Meandstd) (Meanstd) (NC/SMC)  index (Mean+std) (Meanstd) (NC/EMCI) index (Mean#std)  (Mean#std)  (NC/LMCI)
82 0.714+0.11 0.71+0.04 0.69/0.73 161 0.704+0.11 0.70+0.04 0.72/0.67 455 0.8540.09 0.86+0.03 0.85/0.87
170 0.704+0.11 0.70+0.04 0.67/0.73 1652 0.69+0.11 0.70+0.04 0.67/0.72 519 0.7440.09 0.74+0.04 0.77/0.71
1339 0.70+0.09 0.70+0.04 0.67/0.73 1720 0.67+0.11 0.68+0.04 0.65/0.70 976 0.81+0.08 0.81+0.03 0.79/0.83
3520 0.72+0.11 0.71+0.03 0.73/0.70 2728 0.78+0.09 0.78+0.04 0.81/0.76 1587 0.63+0.13 0.62+0.05 0.62/0.63
3768 0.644+0.12 0.64+0.04 0.65/0.64 3499 0.66+0.14 0.65+0.04 0.64/0.66 1659 0.66+0.10 0.67+0.04 0.68/0.64
3797 0.59+0.14 0.59+0.04 0.56/0.61 3737 0.69+0.10 0.68+0.03 0.67/0.70 1839 0.63+0.11 0.63+0.04 0.62/0.65
3894 0.65+0.12 0.66+0.03 0.67/0.64 3777 0.59+0.12 0.58+0.04 0.55/0.61 3489 0.79+0.09 0.78+0.05 0.79/0.78
3908 0.6740.11 0.67+0.04 0.70/0.64 3915 0.94+0.03 0.94+0.01 0.94/0.95 3498 0.704+0.11 0.70+0.05 0.67/0.73
3915 0.94+0.03 0.94+0.01 0.94/0.95 3961 0.93+0.04 0.93+0.01 0.94/0.92 3777 0.59+0.13 0.60+0.05 0.56/0.64
3941 0.89+0.06 0.89+0.02 0.91/0.88 3971 0.86+0.08 0.87+0.03 0.89/0.85 3971 0.87+0.07 0.87+0.03 0.89/0.85
SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI
Feature X Agc X Means Feature X Agc X Means Feature X Asec X Means
index (Mean#std)  (Meansstd)  (NC/SMC) index (Mean#std)  (Meansstd)  (NC/EMCI) index (Mean#std)  (Mean#std)  (NC/LMCI)
59 0.7440.09 0.74+0.03 0.73/0.75 166 0.704+0.09 0.70+0.03 0.68/0.71 737 0.6940.08 0.69+0.02 0.70/0.68
499 0.68+0.12 0.68+0.04 0.71/0.66 432 0.74+0.10 0.74+0.03 0.72/0.75 835 0.59+0.10 0.58+0.03 0.56/0.60
666 0.68+0.08 0.68+0.03 0.70/0.66 1728 0.93+0.03 0.93+0.01 0.94/0.92 976 0.82+0.08 0.82+0.02 0.81/0.83
737 0.7240.09 0.72+0.03 0.74/0.71 2052 0.694+0.10 0.69+0.02 0.70/0.67 1153 0.61+0.12 0.61+0.03 0.62/0.61
1367 0.824+0.11 0.82+0.03 0.81/0.82 2916 0.70+0.08 0.70+0.02 0.71/0.68 1230 0.76+0.09 0.77+0.03 0.78/0.75
1644 0.57+0.12 0.57+0.04 0.55/0.59 2925 0.89+0.06 0.89+0.01 0.89/0.89 2480 0.57+0.09 0.56+0.02 0.57/0.56
1877 0.634+0.10 0.63+0.03 0.62/0.65 3399 0.7240.09 0.72+0.03 0.72/0.73 2779 0.7840.08 0.78+0.03 0.76/0.80
2589 0.66+0.10 0.65+0.05 0.71/0.62 3544 0.794+0.09 0.79+0.02 0.80/0.78 3529 0.59+0.10 0.60-+0.04 0.57/0.63
2639 0.63+0.10 0.63+0.05 0.67/0.60 3784 0.69+0.11 0.69+0.03 0.68/0.70 3877 0.74+0.10 0.75+0.03 0.73/0.77
3686 0.64+0.11 0.64+0.03 0.62/0.66 3984 0.75+0.10 0.75+0.04 0.77/0.72 3886 0.90+0.04 0.91+0.01 0.91/0.90
Table 6

Effect of our adjacency matrix Asc on the top 10 most discriminative DTI feature values in our six classification tasks. We compare DTI features’ mean values and standard
deviations with or without pre-multiplying adjacency matrix As, and compare DTI features’ mean values between different disease status. The mean column is measured
on AsacX, Asqc Tepresents our adaptive calibrated adjacency matrix, and X represents the top 10 DTI feature values of all subjects on the graph.

NC vs. SMC NC vs. EMCI NC vs. LMCI

Feature X Ao X Means Feature X Ao X Means Feature X Agc X Means
index (Meanstd) (Meanstd) (NC/SMC)  index (Meanstd) (Meanstd) (NC/EMCI) index (Mean#std)  (Mean#std)  (NC/LMCI)
72 0.2440.20 0.24+0.07 0.20/0.29 251 0.184+0.21 0.17+0.07 0.22/0.13 251 0.1740.21 0.16+0.10 0.22/0.08
1141 0.08+0.15 0.08+0.06 0.05/0.11 517 0.134+0.18 0.13+0.08 0.21/0.05 279 0.254+0.25 0.25+0.10 0.30/0.19
1663 0.15+0.17 0.15+0.06 0.11/0.19 1372 0.174+0.20 0.18+0.07 0.14/0.23 1801 0.13+0.20 0.12+0.09 0.07/0.18
2551 0.114+0.19 0.11+£0.07 0.15/0.07 1777 0.21+0.18 0.21+0.06 0.25/0.18 2164 0.10+0.15 0.10+0.07 0.05/0.15
2582 0.1940.21 0.19+0.08 0.25/0.13 1801 0.134+0.20 0.13+0.08 0.07/0.18 2225 0.094+0.14 0.09+0.07 0.03/0.16
2884 0.24+0.26 0.23+0.10 0.30/0.16 2444 0.13+0.20 0.13+0.06 0.09/0.16 2976 0.17+0.19 0.17+0.09 0.11/0.24
3025 0.10+0.18 0.10+£0.06 0.06/0.15 2976 0.17+0.19 0.16+0.08 0.11/0.22 2985 0.08+0.20 0.09+0.08 0.04/0.15
3497 0.144+0.20 0.13+0.07 0.18/0.08 2984 0.184+0.18 0.19+0.08 0.25/0.12 3247 0.204+0.22 0.1940.07 0.17/0.21
3518 0.374+0.22 0.36+0.07 0.32/0.40 3139 0.04+0.14 0.05+0.05 0.01/0.09 3297 0.04+0.15 0.05+0.07 0.01/0.08
3566 0.16+0.20 0.16+0.06 0.20/0.13 3495 0.16+0.22 0.16+0.06 0.13/0.19 3486 0.07+0.18 0.07+0.08 0.11/0.02
SMC vs. EMCI SMC vs. EMCI SMC vs. LMCI

Feature X Asec X Means Feature X Agc X Means Feature X Asec X Means
index (Mean#std)  (Mean+std)  (SMC/EMCI) index (Mean#std)  (Mean+std)  (SMC/LMCI) index (Mean#std)  (Mean#std)  (EMCI/LMCI)
1801 0.134+0.20 0.12+0.07 0.06/0.18 76 0.254+0.23 0.24+0.10 0.30/0.16 1841 0.1240.21 0.124+0.08 0.17/0.06
2236 0.13+0.18 0.12+0.06 0.08/0.17 187 0.144+0.17 0.14+0.06 0.11/0.18 2197 0.11+0.19 0.11+0.07 0.07/0.16
2396 0.12+0.19 0.13+0.09 0.06/0.19 503 0.18+0.17 0.18+0.08 0.25/0.11 2213 0.14+0.20 0.15+0.09 0.22/0.09
2444 0.114+0.19 0.11+0.07 0.06/0.16 1801 0.1240.20 0.12+0.08 0.06/0.18 2231 0.1240.19 0.134+0.07 0.08/0.17
2929 0.424+0.24 0.41+0.09 0.48/0.34 2142 0.13+0.17 0.12+0.07 0.08/0.17 2356 0.08+0.17 0.08+0.06 0.04/0.13
3148 0.15+0.18 0.15+0.05 0.17/0.13 2164 0.10+0.15 0.10+0.06 0.05/0.16 2590 0.11+0.19 0.11+0.05 0.09/0.14
3456 0.13+0.18 0.14+0.06 0.18/0.10 2528 0.15+0.21 0.15+0.07 0.11/0.19 2639 0.09+0.17 0.09+0.06 0.13/0.05
3487 0.1940.17 0.19+0.06 0.23/0.15 3018 0.48+0.18 0.48+0.08 0.55/0.41 3066 0.044+0.15 0.04+0.06 0.08/0.00
3879 0.194+0.19 0.19+0.07 0.14/0.24 3105 0.11+0.21 0.12+0.07 0.07/0.17 3101 0.10+0.17 0.11+0.07 0.08/0.14
3977 0.15+0.20 0.15+0.07 0.10/0.20 3387 0.07+0.16 0.07+0.04 0.09/0.06 3760 0.11+0.19 0.10+£0.08 0.16/0.04

the improvement is not obvious. Compared with X, AsqcX has a 90 x 90 brain network. We can see there are many differences
better visualisation result for our six tasks. in the top 10 features’ indices between different prediction tasks.

Tables 5-6 show the details of the experimental results. In the Most of fMRI features’ indices are different from DTI features’ in-
feature index column, we list the top 10 features’ indices, which dices in the same prediction task. For example, the top 10 fMRI
are selected by using RFE method. The feature’s index represents features’ indices for NC vs. SMC is [82, 170, 1339, 3520, 3768, 3797,
the feature’s position in the 1 x 4005 feature vector, which are 3894, 3908, 3915, 3941], whereas the top 10 DTI features’ indices
formed by extracting upper triangular matrix elements from the

13



X. Song, E. Zhou, A.F. Frangi et al.

Medical Image Analysis 69 (2021) 101947

100

ACC (%)

NC vs. SMC

NC vs. EMCI

T T T T 1 1
[ sim [N Sim+Equipment [ Sim+Gender I sim + Equipment+Gender

NC vs. LMCI

SMC vs. EMCI  SMC vs. LMCI EMCI vs. LMCI

Fig. 8. Influence of phenotypic information on the prediction accuracy in our six prediction tasks.

for NC vs. SMC is [72, 1141, 1663, 2551, 2582, 2884, 3025, 3497,
3518, 3566].

Tables 5-6 also describe the mean values and standard devia-
tions of the top 10 feature values. Standard deviations show the
different noise levels of the top 10 features. For example, the num-
ber 3915 fMRI feature in NC vs. SMC has a small standard devia-
tion, which follows its appearance for NC vs. EMCI. This result also
follows in Fig. 6. The number 2976 DTI feature for NC vs. EMCI
has a big standard deviation, which also follows its appearance for
NC vs. LMCIL. This result is also consistent with Fig. 6. The consis-
tency of mean value and standard deviation for the same feature in
different prediction tasks shows the stability of our fMRI and DTI
data, but also shows there is a little fluctuation between the same
features in different subjects although they have same disease sta-
tus.

Tables 5-6 also describe the effect of disease status on fea-
ture values. Tables 5-6, show different disease states have differ-
ent mean values in all prediction tasks. For example, in Table 5,
the mean value of the number 82 fMRI feature of all NC subjects
is 0.69, whereas its mean value of SMC subjects is 0.73. This dif-
ference between different disease statuses provides the foundation
to predict disease. Compared with the effect of disease status on
fMRI feature values in Table 5, the effect on DTI feature values in
Table 6 appears much more apparent. For example, for NC vs. SMC,
the mean difference of mean values of the top 10 fMRI features is
0.04, whereas the mean difference of the top 10 DTI features is 0.1.
The more obvious discriminative DTI features make the prediction
tasks easier, and this follows the results in Tables 3, whereas the
performance of our method and traditional methods based on DTI
data is much better than the performance based on fMRI data.

The effectiveness of t-test method (Arbabshirani et al.,, 2017;
Dietterich, 1998) for feature selection and the work (Huang et al.,
2020) suggest that big mean difference and small standard devia-
tion are beneficial for classification. As shown in Fig. 6, Table 5 and
Table 6, by pre-multiplying adjacency matrix Asqc, the standard de-
viations become smaller, and the results in Fig. 7 validate that pre-
multiplying adjacency matrix can improve final classification per-
formance.
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4. Discussion
4.1. Effect of phenotypic information

Non-imaging phenotypic information (e.g., equipment type and
gender) is a factor to affect imaging. For example, different equip-
ment types probably use different imaging parameters, and this fi-
nally results in some differences in the extracted image features.
An advantage of GCN algorithms is integrating non-imaging phe-
notypic information into edge weights on graphs, as shown in
Egs. (1) and (2). For a subject on a graph, there is a convolution
filter as shown in Fig. 2. The convolution filter uses the features
from other subjects to update the features of the subject being
analysed, and edge weights are corresponding to the convolution
coefficients. In view the differences resulted by equipment type
and gender on image features, we assign a bigger edge weight be-
tween the pair subjects with the same equipment type and gender,
as shown in Egs. (1) and (2). The non-imaging phenotypic informa-
tion is not used as a biomarker to supplement extracted features.
In contrast, it is used to establish a more adequate and practical
graph. As shown by Parisot et al. Parisot et al., 2018), the gender
and equipment type is vital information for graph construction in
AD and ASD prediction, which result in 3% improvement on the fi-
nal accuracy. Considering the characteristics of our tasks, we also
investigate the effect of phenotypic information on final prediction
accuracy, and the results in our six prediction tasks are shown in
Fig. 8. The combination of phenotypic information and a similarity
function is shown in Eqs. (1) and ((2).

In this experiment, we observe apparent variations on accu-
racy. Specifically, the performance based on the only one similar-
ity is the worst, whereas the performance based on similarity of
both phenotypic information (gender and equipment type) is the
best. The difference between the best and the worst performing
graphs in our six prediction tasks are 12.1%, 8.1%, 4.8%, 8.2%, 8.5%
and 4.6%, respectively. Gender appears to have a more consider-
able influence on accuracy than the imaging equipment used. This
shows that features with different gender in our tasks have many
differences. These findings are consistent with the previous study
by (Parisot et al., 2018).
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Fig. 9. Effect of the number of the selected features on prediction accuracy in our
six prediction tasks.

4.2. Effect of the number of the selected features

RFE is adopted to select features in the paper due to its promis-
ing performance. As it recursively removes attributes and builds
the model using the remaining attributes, the number of features
needs to be set to a reasonable value. We test the influence of the
selected features’ number through experiment, and its influence in
all classification tasks on ACC is shown in Fig. 9. In Fig. 9, the num-
ber of the selected features varies from 0 to 300 with a step 10.
The ACC values in all classification tasks increase as the number
increases starting from zero, then the performance maintains a lit-
tle fluctuation with the number further increasing. Eventually, after
exceeding a specific value, the further increase in the number re-
sults in performance deterioration. In our six prediction tasks, the
ACC values reach the best with the number varying about from 40
to 80. For NC vs. SMC, the performance deteriorates rapidly with
the number increasing over about 80. For EMCI vs. LMCI, the per-
formance deteriorates rapidly with the number over 160. These re-
sults validate that the number of the selected features need to be
set as a reasonable value. A large number can increase system bur-
den and cause performance deterioration, while a small number
cannot represent the subject’s information. Therefore, we set the
number of the selected features in all tasks as 50 in this paper.

Ay

fMRI

A, Ay
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4.3. Parameters of weight mechanism

We have developed two GCN models according to functional
data and structural data. After our dual-modal GCN, we get a func-
tional score and structural score for every subject. Namely, we use
a combined weight mechanism to combine the two scores to per-
form the final prediction. For example, the final predicted score for
a subject v is denoted as wy x Score,{ + w, x Scorej, . The parame-
ters wy and w, are selected according to our experimental results.
In this subsection, we show the effect of different weight parame-
ters on performance in Table 7.

As Table 7 shows, different combined weight coefficients have
an obvious influence on the final prediction accuracy. According to
the above results, we set w1=0.5 and w,=0.5 in our six tasks.

4.4. Visualisation of the adjacency matrix

The proposed similarity-aware receptive fields, adaptive mech-
anism and calibration mechanism play the role to improve adja-
cency matrix and eventually result in better performance. To de-
scribe the effect of the above methods on the adjacency matrix,
we use imagesc() function in MATLAB to show four kinds of ad-
jacency matrices. In Fig. 10, there are four functional adjacency
matrices and four structural adjacency matrices, where Ay repre-
sents the adjacency matrix constructed based on the traditional
method, As represents the adjacency matrix constructed based on
the traditional method and our similarity-aware receptive fields,
Agq represents the adjacency matrix constructed based on our
similarity-aware receptive fields and our adaptive adjacency ma-
trix, and Asqc represents the adjacency matrix constructed based
on our similarity-aware receptive fields, adaptive mechanism and
calibration mechanism.

As shown in Fig. 10, the adjacency matrix Ay constructed
by using the traditional method is a dense matrix. After using
our similarity-aware receptive fields, it becomes much sparse as
the similarity-aware receptive fields ignore a part of connections.
For the adjacency matrix Ay constructed by using the traditional
method, there are many differences between functional and struc-
tural adjacency matrices. After using our three mechanisms, we fi-
nally get a stable and united adjacency matrix Agqc.

A"‘ls'.u:

Fig. 10. Visualisation results of kinds of adjacency matrices.
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Table 7
Effect of different weight parameters on accuracy in our six classification tasks.

Parameters NC vs. SMC NC vs. EMCI NC vs. LMCI SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI
w1=0.1, w,=0.9 81.82+5.97 82.95+6.52 87.80+3.88 86.39+4.38 86.58+6.11 82.92+3.51
w1=0.2, w,=0.8 82.95+6.44 84.09+6.44 87.80+5.39 87.51+4.09 86.58+6.11 84.14+3.51
w1=0.3, w,=0.7 82.95+5.97 82.95+6.52 89.02+6.00 88.63+5.23 87.80+5.23 84.14+4.57
w1=0.4, w,=0.6 84.09+4.57 84.09+6.44 89.02+7.02 89.75+4.38 89.02+4.38 85.36+4.57
w1=0.5, w,=0.5 84.09+4.57 85.22+6.65 89.02+6.44 88.63+4.86 87.80+3.74 86.58+4.86
w;=0.6, w,=0.4 82.97+4.72 85.22+6.65 86.58+7.05 88.63+3.74 86.58+3.92 84.14+5.36
w1=0.7, w,=0.3 79.54+6.92 84.09+7.43 85.36+6.52 87.51+£6.41 84.14+4.38 81.70+6.95
w1=0.8, w,=0.2 79.54+6.95 79.54+6.65 84.14+5.52 84.09+7.76 81.70+5.52 80.48+8.46
w1=0.9, w,=0.1 77.27+7.52 76.12+6.30 84.14+6.11 82.97+7.05 79.26+5.8 79.26+7.76
Table 8
The top 10 most discriminative fMRI features and their corresponding ROIs in our six classification tasks.

NC vs. SMC NC vs. EMCI NC vs. LMCI

Feature ROI index ROI name Feature ROI index ROI name Feature ROI index ROI name

82 1,83 PreCG.L, TPOsup.L 161 2,74 PreCG.R, PUT.R 455 6,26 ORBsup.R, ORBsupmed.R

170 2,83 PreCG.R, TPOsup.L 1652 21,83 OLEL, TPOsup.L 519 6,90 ORBsup.R, ITG.R

1339 17,52 ROL.L, MOG.R 1720 22,83 OLER, TPOsup.L 976 12,64 IFGoperc.R, SMG.R

3520 59,70 SPG.L, PCLR 2728 39,88 PHG.L, TPOmid.R 1587 20,87 SMA.R, TPOmid.L

3768 68,84 PCUN.R, TPOsup.R 3737 67,75 PCUN.L, PAL.L 1659 21,90 OLEL, ITG.R

3797 70,72 PCL.R, CAU.R 3777 69,72 PCL.L, CAU.R 1839 24,69 SFGmed.R, PCL.L

3894 75,84 PAL.L, TPOsup.R 3915 77,78 THA.L, THAR 3489 58,70 PoCG.R, PCLR

3908 76,84 PAL.R, TPOsup.R 3499 58,80 PoCG.R, HES.R 3498 58,79 PoCG.R, HES.L

3915 77,78 THA.L, THA.R 3961 81,82 STG.L, STG.R 3777 69,72 PCL.L, CAU.R

3941 79,81 HES.L, STG.L 3971 82,84 STG.R, TPOsup.R 3971 82,84 STG.R, TPOsup.R

SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI

Feature  ROI index  ROI name Feature ROl index  ROI name Feature ROl index  ROI name

59 1, 60 PreCG.L, SPG.R 737 9, 62 ORBmid.L, IPL.R 166 2,79 PreCG.R, HES.L

499 6, 70 ORBsup.R, PCLR 835 10, 88 ORBmid.R,TPOmid.R 432 5, 87 ORBsup.L, TPOmid.L

666 8,72 MFG.R, CAU.R 976 12, 64 [FGoperc.R, SMG.R 1728 23,24 SFGmed.L, SFGmed.R

737 9, 62 ORBmid.L, IPLR 1153 14, 88 [FGtriang.R,TPOmid.R 2052 27, 90 REC.L, ITG.R

1367 17, 80 ROL.L, HES.R 1230 15, 90 ORBinf.L, ITG.R 29 43, 82 CALLL, STG.R

1644 21,75 OLF.L, PAL.L 2480 35, 50 PCG.L, SOG.R 2925 44, 45 CAL.R, CUN.L

1877 25, 42 ORBsupmed.L AMYG.R 2779 40, 89 PHG.R, ITG.L 3399 55,79 FFG.L, HES.L

2589 37,52 HIP.L, MOG.R 3529 59, 79 SPG.L, HES.L 3544 60, 64 SPG.R, SMG.R

2639 38, 50 HIP.R, SOG.R 3877 74, 82 PUTR, STG.R 3784 69, 79 PCL.L, HES.L

3686 65, 71 ANG.L, CAU.L 3886 75, 76 PAL.L, PALR 3984 83, 90 TPOsup.L, ITG.R

4.5. Most discriminative connectivity features

Tables 8-9 list the top 10 most discriminative connectivity fea-
tures and related ROI brain regions in six classification tasks. For
fMRI data, we can see that many of these selected brain regions
follow the observations reported in the previous studies. For ex-
ample, the right olfactory cortex (OLER) (Li et al., 2020a; Sun et al.,
2012; Tekin and Cummings, 2002; Vasavada et al., 2015; Yu et al.,
2019; Zhang et al., 2018), left hippocampus (HIP.L) (Salvatore et al.,
2015; Zhang et al., 2018), left calcarine cortex(CAL.L) (Li et al.,
2020a; Xu et al., 2016) are usually reported as highly associated
with AD/MCI pathology. However, there are many differences in
the top 10 most discriminative connectivity features between our
six prediction tasks and two modalities. As shown in Fig. 9, the
performance of our six prediction tasks is saturated when the
number of the selected features is set as 30. Therefore, we show
the top 30 discriminative connectivity features for the FC network
and SC network in Fig. 11. As shown in Fig. 11, there are many
differences in the top 30 most discriminative connectivity features
between different prediction tasks and different modalities. In the
literature (Li et al., 2019b, 2020a; Wee et al., 2014; Yu et al., 2019;
Zhang et al., 2018), there are also many differences in the top 10
most discriminative connectivity features and the top 10 most dis-

criminative ROIs for SMC vs. NC. Based on above differences in our
paper and literature, the different noise levels of the top 10 feature
values in Tables 5-6, and the influence of selected features’ num-
ber in Fig. 9, we conclude there are several hundred connectivity
features are associated with prediction tasks. This conclusion fol-
lows the results in the literature (Parisot et al., 2018), where GCN
obtains the best performance when using RFE to select 2000 fea-
tures, or using MLP to select 250 features, or using Autoencoder
(AE) to select 500 features. The above results also show that dif-
ferent construction methods of brain network and feature selec-
tion methods can cause obvious difference in most discriminative
connectivity features.

4.6. Comparison to the related prior works

Besides investigating our three mechanisms and parameters of
GCN impact prediction performance, we further compare our SAC-
GCN method with other different competing methods in the corre-
sponding papers. Table 10 shows the comparison results. We can
observe that our proposed method has achieved promising per-
formance. Apart from good prediction performance, our proposed
method does not need to construct complex brain connection net-
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Table 9
The top 10 most discriminative DTI features and their corresponding ROIs in our six classification tasks.
NC vs. SMC NC vs. EMCI NC vs. LMCI
Feature ROI index ROI name Feature ROI index ROI name Feature ROI index ROI name
72 1,73 PreCG.L, PUT.L 251 3,77 SFGdor.L, THA.L 251 3,77 SFGdor.L, THA.L
1141 14,76 [FGtriang.R, PAL.R 517 6,88 ORBsup.R, TPOmid.R 279 4,19 SFGdor.R, SMA.L
1663 22,26 OLER, ORBsupmed.R 1372 17,85 ROL.L, MTG.L 1801 24,31 SFGmed.R, ACG.L
2551 36,67 PCG.R, PCUN.L 1777 23,73 SFGmed.L, PUT.L 2164 29,79 INS.L, HES.L
2582 37,45 HIP.L, CUN.L 1801 24,31 SFGmed.R, ACG.L 2225 30,80 INS.R, HES.R
2884 43,50 CAL.L, SOG.R 2444 34,69 DCG.R, PCL.L 2976 45,51 CUN.L+R, MOG.L
3025 46,56 CUN.R, FFG.R 2976 45,51 CUN.L+R, MOG.L 2985 45,60 CUN.L+R, SPG.R
3497 58,78 PoCG.R, THA.R 2984 45,59 CUN.L+R, SPG.L 3247 51,73 MOG.L, PUT.L
3518 59,68 SPG.L, PCUN.R 3139 48,85 LING.R, MTG.L 3297 52,85 MOG.R, MTG.L
3566 60,86 SPG.R, MTG.R 3495 58,76 PoCG.R, PAL.R 3486 58,67 PoCG.R, PCUN.L
SMC vs. EMCI SMC vs. LMCI EMCI vs.LMCI
Feature ROl index  ROI name Feature ROl index  ROI name Feature ROl index  ROI name
1801 24,31 SFGmed.R, ACG.L 76 1,77 PreCG.L, THA.L 1841 24,71 SFGmed.R, CAU.L
2236 31,32 ACG.L, ACG.R 187 3,13 SFGdor.L, [FGtriang.L ~ 2197 30,52 INS.R, MOG.R
2396 33,77 DCG.L, THA.L 503 6,74 ORBsup.R, PUT.R 2213 30,68 INS.R, PCUN.R
2444 34,69 DCG.R, PCL.L 1801 24,31 SFGmed.R, ACG.L 2231 30,86 INS.R, MTG.R
2929 44,49 CALR, SOG.L 2142 29,57 INS.L, PoCG.L 2356 33,37 DCG.L, HIP.L
3148 49,53 SOG.L, I0G.L 2164 29,79 INS.L, HES.L 2590 37,53 HIP.L, I0G.L
3456 57,69 PoCG.L, PCL.L 2528 36,44 PCG.R, CALR 2639 38,50 HIP.R, SOG.R
3487 58,68 PoCG.R, PCUN.R 3018 46,49 CUN.R, SOG.L 3066 47,54 LING.L, IOG.R
3879 74,84 PUT.R, TPOsup.R 3105 48,51 LING.R, MOG.L 3101 47,89 LING.L, ITG.L
3977 82,90 STG.R, ITG.R 3387 55,67 FFG.L, PCUN.L 3760 68,76 PCUN.R, PALR
Table 10
Algorithm comparison with the related works.
References Modality Subject Method Task ACC SEN SPE
(Wee et al,, 2016)  fMRI 29 EMCI, 30 NC Fused multiple graphical lasso EMCI vs. NC 796 758  70.0
(Yu et al., 2017) fMRI 50 MCI, 49 NC Weighted Sparse Group MCI vs. NC 84.8 91.2 78.5
Representation
(Guo et al., 2017) fMRI 33 EMCI, 32 LMCI, 28 NC Multiple Features of EMCI vs. NC 72.8 78.2 67.1
Hyper-Network
LMCI vs. NC 786 825 721
(Li et al., 2020b) fMRI+DTI 36MCI, 37NC Adaptive dynamic functional MCI vs. NC 87.7 889 865
connectivity
(Zhu et al., 2019) MRI+PET+ CSF 99MCI, 53NC SPMRM model MCI vs. NC 835 950 62.8
(Lei et al., 2020) fMRI+DTI 40 LMCI, 77 EMCI, 67 NC  Low-Rank Self-calibrated Brain NC vs. SMC 829 886 772
Network, Joint Non-Convex
Multi-Task Learning
NC vs. EMCI 852 863  84.1
NC vs. LMCI 878 842 909
SMC vs. EMCI 840 818 863
SMC vs. LMCI 90.2 894 909
EMCIvs. LMCI  81.7 789 84.0
Ours fMRI+DTI 40 LMCI, 77 EMCI, 67 NC  Similarity-aware adaptive NC vs. SMC 849 886 795
calibrated GCN
NC vs. EMCI 852 909 795
NC vs. LMCI 89.0 894 886
SMC vs. EMCI 886 954 818
SMC vs. LMCI 87.8 842 909
EMCI vs. LMCI 85.5 92.1 81.8

works. Hence, it has a good application prospect in other predic-
tion tasks.

In our earlier work (Lei et al, 2020), we proposed to use
self-calibrated low-rank regularisation to construct fMRI functional
network, concatenated fMRI and DTI features. We used a multi-
task learning framework to select the most discriminative fea-
tures for final prediction. Although the work archived good per-
formance, it ignores to integrate phenotypic information and the
interactions between subjects. Compared to it, our SAC-GCN has
good performance without constructing complicated brain connec-
tion networks. The proposed method is not limited to the tasks
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in this paper, and can flexibly be adapted to other multi-modal
tasks.

5. Conclusion

In this paper, we propose three mechanisms to improve GCNs
for SMC and MCI prediction. These mechanisms improve predic-
tion performance significantly by establishing a more accurate ad-
jacency matrix. In the adjacency matrix, the similarity-aware re-
ceptive fields consider the disease status of those subjects in the
training set and constrain the receptive field of labelled subjects to
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Fig. 11. Top 30 discriminative connectivity features in fMRI and DTI brain connection networks in our six prediction tasks.

those subjects with the same status. The adaptive mechanism uses
pre-trained GCNs to score all subjects and then uses score differ-
ence to replace correlation distance to update similarity. Besides,
the calibration mechanism fuses dual-modal information into the
adjacency matrix. Our experimental results on SAC-GCNs show
significant improvement over traditional GCNs. To reveal the rea-
son for good performance, we describe how our mechanisms im-
prove the adjacency matrix and then describe its filtering effect
by analysing feature values. Despite the superior performance, our
SAC-GCN has a more straightforward structure and practical appli-
cation prospect in other prediction tasks. In our future work, we
will improve our calibration mechanism and extend this work to
multi-task classification.
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